当前位置: X-MOL 学术Surf. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MACHINING OF HARDSTONE QUARTZ WITH MODIFIED AJM PROCESS USING HOT SiC ABRASIVES: ANALYSIS, MODELING, OPTIMIZATION, AND COST ANALYSIS
Surface Review and Letters ( IF 1.1 ) Pub Date : 2020-10-07 , DOI: 10.1142/s0218625x20500493
SUBHADIP PRADHAN 1 , SUDHANSU RANJAN DAS 1 , BASANTA KUMAR NANDA 2 , PANKAJ CHARAN JENA 1 , DEBABRATA DHUPAL 1
Affiliation  

Machining of hard and brittle materials such as engineering ceramics, glass, and silicon is a formidable task. Unlike cutting processes employing plasma and lasers, better machining capabilities of abrasive jet machining are characterized by thermally damaged free surface which is highly competitive as well as important for survival of materials in service. In this paper, an attempt has been made to combine hot abrasives and compressed air to form a hot abrasive air jet. This study aims to analyze the cutting performance in hot-abrasive jet machining (HAJM) of hardstone quartz concerning surface roughness, taper angle (TA), and material removal rate (MRR). Combined approach of Box–Behnken design — analysis of variance, response surface methodology, and statistical technique (here desirability function approach), followed by computational approach (here genetic algorithm), is, respectively, employed for experimental investigation, predictive modeling, and multi-response optimization. Thereafter, the effectiveness of proposed two multi-objective optimization techniques is evaluated by confirmation test and subsequently, the best optimal solution (i.e. at air pressure of 7[Formula: see text]kgf/cm2, abrasive temperature of [Formula: see text]C, stand-off distance of 4 mm) is used for economic analysis. Result shows that the most significant parameter is abrasive temperature for surface roughness, whereas it is pressure in case of both TA and MRR. Applications of hot abrasives in AJM process have shown attention in enhancing the cutting performance for material removal. Due to lower percentage contribution of error (6.68% to Rz, 9.89% to TA, and 6.42% in case of MRR), a higher correlation coefficient ([Formula: see text]) was obtained with the quadratic regression model, which showed values of 0.92, 0.9, and 0.93 for surface roughness, TA, and MRR, respectively.

中文翻译:

使用热 SiC 磨料通过改进的 AJM 工艺加工硬石石英:分析、建模、优化和成本分析

工程陶瓷、玻璃和硅等硬脆材料的加工是一项艰巨的任务。与使用等离子和激光的切割工艺不同,磨料喷射加工的更好加工能力的特点是热损伤自由表面,这具有很强的竞争力,并且对于使用中的材料的生存很重要。在本文中,尝试将热磨料和压缩空气结合起来形成热磨料空气射流。本研究旨在从表面粗糙度、锥角 (TA) 和材料去除率 (MRR) 方面分析硬石石英在热磨料喷射加工 (HAJM) 中的切削性能。Box-Behnken 设计的组合方法——方差分析、响应面方法和统计技术(此处为意愿函数方法),其次是计算方法(这里是遗传算法),分别用于实验研究、预测建模和多响应优化。此后,通过确认试验评估所提出的两种多目标优化技术的有效性,随后得出最佳最优解(即在气压为 7[公式:见正文]kgf/cm2,磨料温度[公式:见正文]C,隔距4毫米)用于经济分析。结果表明,最重要的参数是表面粗糙度的磨料温度,而在 TA 和 MRR 的情况下,它是压力。热磨料在 AJM 工艺中的应用在提高材料去除的切削性能方面表现出关注。由于误差的百分比贡献较低(Rz 为 6.68%,TA 为​​ 9.89%,MRR 为 6.42%),使用二次回归模型获得了更高的相关系数([公式:见正文]),显示值表面粗糙度、TA 和 MRR 分别为 0.92、0.9 和 0.93。
更新日期:2020-10-07
down
wechat
bug