当前位置: X-MOL 学术Funct. Mater. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Peptide-inspired green synthesis of hedgehog-like CuO nanoclusters on reduced graphene oxide for non-enzymatic hydrogen peroxide sensor
Functional Materials Letters ( IF 1.3 ) Pub Date : 2020-07-29 , DOI: 10.1142/s1793604720510479
Qifang Zhang 1 , Li Wang 1 , Yuhai Wang 2 , Zhuang Li 3
Affiliation  

Bioinspired synthesis provides a potential green method for creating functional nanomaterials on graphene supports. In this study, we demonstrate the preparation of hedgehog-like cupric oxide nanoclusters (CuONCs) on peptide-modified reduced graphene oxide (RGO-Pep) nanohybrids through a solution-phase synthesis in which the bound peptide molecules (GNNQQNYEE) mediate the non-covalent modification of GO and provide the adsorption of Cu[Formula: see text] ions and the nucleation sites for the growth of CuONCs. The synthesized RGO-Pep-CuONCs hybrids were further utilized for the modification of a glass carbon electrode to fabricate a non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2). It was found that the fabricated H2O2 sensor exhibited good performances for sensing H2O2 with a detection limit of [Formula: see text]M and two wide linear detection ranges. In addition, this sensor revealed good selectivity and stability. It is expected that the strategies used in this study will be valuable to inspire the creation of various functional biomolecule- and graphene-based hybrid bionanomaterials for the applications in materials science, sensors, biomedical engineering, tissue engineering, nanotechnology, and other fields.

中文翻译:

用于非酶过氧化氢传感器的还原氧化石墨烯上基于肽的绿色合成刺猬状 CuO 纳米簇

仿生合成为在石墨烯载体上制造功能性纳米材料提供了一种潜在的绿色方法。在这项研究中,我们展示了在肽修饰的还原氧化石墨烯 (RGO-Pep) 纳米杂化物上通过结合肽分子 (GNNQQNYEE) 介导非GO的共价修饰并提供Cu[公式:见文本]离子的吸附和CuONCs生长的成核位点。合成的 RGO-Pep-CuONCs 杂化物进一步用于修饰玻璃碳电极以制造过氧化氢的非酶电化学传感器(H22)。发现伪造的H22传感器在感测 H 方面表现出良好的性能22检测限为 [公式:见正文]M 和两个宽的线性检测范围。此外,该传感器显示出良好的选择性和稳定性。预计本研究中使用的策略将有助于激发创建各种功能性生物分子和石墨烯基杂化生物纳米材料,用于材料科学、传感器、生物医学工程、组织工程、纳米技术和其他领域的应用。
更新日期:2020-07-29
down
wechat
bug