当前位置: X-MOL 学术Mach. Learn. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep learning of interface structures from simulated 4D STEM data: cation intermixing vs. rougheningNotice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Machine Learning: Science and Technology ( IF 6.3 ) Pub Date : 2020-11-03 , DOI: 10.1088/2632-2153/aba32d
M P Oxley 1 , J Yin 2 , N Borodinov 1 , S Somnath 2 , M Ziatdinov 1, 3 , A R Lupini 1 , S Jesse 1 , R K Vasudevan 1 , S V Kalinin 1
Affiliation  

Interface structures in complex oxides remain an active area of condensed matter physics research, largely enabled by recent advances in scanning transmission electron microscopy (STEM). Yet the nature of the STEM contrast in which the structure is projected along the given direction precludes separation of possible structural models. Here, we utilize deep convolutional neural networks (DCNN) trained on simulated 4D STEM datasets to predict structural descriptors of interfaces. We focus on the widely studied interface between LaAlO3 and SrTiO3, using dynamical diffraction theory and leveraging high performance computing to simulate thousands of possible 4D STEM datasets to train the DCNN to learn properties of the underlying structures on which the simulations are based. We test the DCNN on simulated data and show that it is possible (with >95% accuracy) to identify a physically rough from a chemically diffuse interface and create a DCNN regression model to predict step positions. We quantify the applicability of the model to different thicknesses and the transferability of the approach. The method shown here is general and can be applied for any inverse imaging problem where forward models are present.



中文翻译:

从模拟的4D STEM数据深入学习界面结构:阳离子混合与粗糙化注意:本手稿是由UT-Battelle,LLC与美国能源部根据合同号DE-AC0500OR22725编写的。美国政府保留并且出版者通过接受该文章发表,承认美国政府保留非专有,付费,不可撤销的全球性许可,以出版或复制本手稿的出版形式,或出于美国政府的目的,允许其他人这样做。能源部将根据DOE公共访问计划(http://energy.gov/downloads/doe-public-access-plan)向公众提供这些联邦资助的研究结果。

复杂氧化物中的界面结构仍然是凝聚态物理研究的一个活跃领域,这在很大程度上得益于扫描透射电子显微镜(STEM)的最新进展。然而,STEM对比的本质(其中结构沿给定方向投影)排除了可能的结构模型的分离。在这里,我们利用在模拟4D STEM数据集上训练的深度卷积神经网络(DCNN)来预测界面的结构描述符。我们专注于广泛研究的LaAlO 3和SrTiO 3之间的界面,使用动态衍射理论并利用高性能计算来模拟数千种可能的4D STEM数据集,以训练DCNN来学习模拟所基于的基础结构的属性。我们在模拟数据上测试了DCNN,并表明有可能(准确度> 95%)从化学扩散界面识别出物理粗糙的物体,并创建DCNN回归模型来预测台阶位置。我们量化模型对不同厚度的适用性和方法的可传递性。此处显示的方法是通用的,可以应用于存在正向模型的任何逆成像问题。

更新日期:2020-11-03
down
wechat
bug