当前位置: X-MOL 学术J. Phys. D: Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy dissipation and efficiency of exploding stainless steel wires of various lengths and diameters
Journal of Physics D: Applied Physics ( IF 3.1 ) Pub Date : 2020-11-03 , DOI: 10.1088/1361-6463/abbe4c
M Bigelmayr 1 , P Pieterse 1 , D Uhrlandt 1, 2
Affiliation  

Electrical exploding wires have found many applications in industry and research. Some of the most promising applications include high-speed sheet metal forming and explosive welding. Most research to date has been conducted using thin highly conductive, pure metal wires at relatively low energies. In contrast, experimental trials are performed in air, on relatively thick AISI 304 stainless steel wires with diameters 600–800 m and lengths ranging from 40 to 160 mm. The test wire produces circuit damping in a series RLC circuit with C = 150 F and L = 4.36 H, which yields a maximum theoretical discharge energy of 2.7 kJ at 6 kV. The energy absorbed in the wire and the wire plasma respectively, is calculated to determine the fraction of absorbed energy, i.e. the energy transfer efficiency, for each case and the optimum wire dimensions for the circuit. Longer wires attain a lower action integral and absorb more energy with respect to short wires resulting in a higher energy transfer efficiency to the wire. Thicker wires attain a lower final action integral despite lower initial resistance and absorb more energy with respect to thin wires resulting in a higher energy transfer efficiency to the wire. The total efficiency of dissipated energy in the wire is analysed depending on the wire length and diameter, together with an introduction of the time-averaged wire resistance.



中文翻译:

不同长度和直径的不锈钢丝爆炸的能量耗散和效率

防爆电线在工业和研究中有许多应用。一些最有前途的应用包括高速钣金成型和爆炸焊接。迄今为止,大多数研究都是使用能量相对较低的高导电性纯金属细线进行的。相比之下,实验试验是在空气中进行的,在直径为 600-800 的相对较粗的 AISI 304 不锈钢线上进行米和长度范围从 40 到 160 毫米。测试线在C  = 150的串联 RLC 电路中产生电路阻尼F 和L  = 4.36H,在 6 kV 下产生的最大理论放电能量为 2.7 kJ。分别计算导线和导线等离子体中吸收的能量以确定吸收能量的分数,即能量转移效率,对于每种情况和电路的最佳导线尺寸。较长的导线获得较低的作用积分,并且相对于较短的导线吸收更多的能量,从而导致更高的能量传输效率到导线。尽管初始电阻较低,但较粗的线获得较低的最终作用积分,并且相对于细线吸收更多能量,从而导致向线的更高能量传输效率。根据导线长度和直径以及引入的时间平均导线电阻来分析导线中耗散能量的总效率。

更新日期:2020-11-03
down
wechat
bug