当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effects of variable porosity and cell size on the thermal performance of functionally-graded foams
International Journal of Thermal Sciences ( IF 4.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijthermalsci.2020.106696
Marcello Iasiello , Nicola Bianco , Wilson K.S. Chiu , Vincenzo Naso

Abstract The thermal performance of several engineering devices, such as heat exchangers, volumetric solar receivers and thermal energy storage systems, is improved by open-cell metal or ceramic foams. Among them functionally-graded foams, through which morphological characteristics are variable, look promising. Heat transfer and pressure drop in a functionally-graded foam, with a uniform heat flux entering one of its sides, are investigated numerically in this paper. Porosity and cell size variable in the direction of the entering heat flux according to different power-law functions are considered; their maximum and minimum values are constrained at the opposite upper and lower sides of the foam. Governing equations, written with reference to a Representative Elementary Volume (REV) of the foam, are solved with a Local Thermal Non Equilibrium (LTNE) model by means of a finite element scheme; the code is validated with experimental data from the literature. The thermal performance of the foam is expressed by a Performance Evaluation Criterion (PEC), referred to the average morphological characteristics of foams with the same surface area. Nusselt numbers, friction factors and Performance Evaluation Criteria (PECs), for different power-laws, are predicted. A 38% higher PEC than in foams with uniform porosity is found in foams with variable-porosity while a 14% larger PEC is exhibited in foams with variable cell size. A 42% increase in PEC is found in foams that account for both variable porosity and cell size.

中文翻译:

可变孔隙率和泡孔尺寸对功能梯度泡沫热性能的影响

摘要 开孔金属或陶瓷泡沫可改善换热器、容积式太阳能接收器和热能存储系统等多种工程设备的热性能。其中形态特征可变的功能分级泡沫看起来很有前景。本文对功能梯度泡沫中的传热和压降进行了数值研究,该泡沫具有均匀的热通量进入其一侧。考虑根据不同幂律函数在进入热通量方向上可变的孔隙率和单元尺寸;它们的最大值和最小值被限制在泡沫的上下两侧。参考泡沫的代表性基本体积 (REV) 编写的控制方程,用局部热非平衡 (LTNE) 模型通过有限元方案求解;该代码通过文献中的实验数据进行了验证。泡沫的热性能由性能评估标准 (PEC) 表示,指的是具有相同表面积的泡沫的平均形态特征。预测了不同幂律的 Nusselt 数、摩擦系数和性能评估标准 (PEC)。在具有可变孔隙率的泡沫中发现 PEC 比具有均匀孔隙率的泡沫高 38%,而在具有可变泡孔尺寸的泡沫中表现出的 PEC 高 14%。在考虑可变孔隙率和泡孔尺寸的泡沫中发现 PEC 增加了 42%。泡沫的热性能由性能评估标准 (PEC) 表示,指的是具有相同表面积的泡沫的平均形态特征。预测了不同幂律的 Nusselt 数、摩擦系数和性能评估标准 (PEC)。在具有可变孔隙率的泡沫中发现 PEC 比具有均匀孔隙率的泡沫高 38%,而在具有可变泡孔尺寸的泡沫中表现出的 PEC 高 14%。在考虑可变孔隙率和泡孔尺寸的泡沫中发现 PEC 增加了 42%。泡沫的热性能由性能评估标准 (PEC) 表示,指的是具有相同表面积的泡沫的平均形态特征。预测了不同幂律的 Nusselt 数、摩擦系数和性能评估标准 (PEC)。在具有可变孔隙率的泡沫中发现 PEC 比具有均匀孔隙率的泡沫高 38%,而在具有可变泡孔尺寸的泡沫中表现出的 PEC 高 14%。在考虑可变孔隙率和泡孔尺寸的泡沫中发现 PEC 增加了 42%。在具有可变孔隙率的泡沫中发现 PEC 比具有均匀孔隙率的泡沫高 38%,而在具有可变泡孔尺寸的泡沫中表现出的 PEC 高 14%。在考虑可变孔隙率和泡孔尺寸的泡沫中发现 PEC 增加了 42%。在具有可变孔隙率的泡沫中发现 PEC 比具有均匀孔隙率的泡沫高 38%,而在具有可变泡孔尺寸的泡沫中表现出的 PEC 高 14%。在考虑可变孔隙率和泡孔尺寸的泡沫中发现 PEC 增加了 42%。
更新日期:2021-02-01
down
wechat
bug