当前位置: X-MOL 学术Biointerphases › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual topography of laminin corona on gallium arsenide nanowires
Biointerphases ( IF 1.6 ) Pub Date : 2020-10-05 , DOI: 10.1116/6.0000387
Stefán Bragi Gunnarsson 1 , Cesare Mellace 1 , Katja Bernfur 1 , Sudhakar Sivakumar 2 , Martin H Magnusson 2 , Tommy Cedervall 1
Affiliation  

Nanowires (NWs) are novel nanomaterials with applications in everything from medical implants to solar cells. With increasing number of applications, it is increasingly likely that organisms are exposed to these materials either intentionally or by accident. It is, therefore, important to study their interactions with biological systems and biomolecules. Upon exposure to biological fluids, nanostructure surfaces are quickly covered by a biomolecule corona. The composition of the corona determines the nanostructure's biological fate. Furthermore, upon adsorption, the protein structure can be affected. In order to study the corona morphology, we used two model proteins, laminin of the extracellular matrix and the immune system enzyme myeloperoxidase. We image the protein corona directly by cryo-TEM and enhance resolution by labeling the corona with activated gold nanoparticles. Three-dimensional imaging of the protein corona further increases the resolution and reveals irregularities in corona topography. By doing so, we identified bimodal distribution of spacing between gold nanoparticles and the NW surface for laminin corona at 58 and 85 nm distance from the NWs’ surface. The dual topography of the corona is adding a new complexity of the protein corona surface and its interactions with the surrounding biology.

中文翻译:

砷化镓纳米线上层粘连蛋白电晕的双重形貌

纳米线 (NW) 是新型纳米材料,可应用于从医疗植入物到太阳能电池的所有领域。随着应用数量的增加,生物体有意或无意地接触这些材料的可能性越来越大。因此,研究它们与生物系统和生物分子的相互作用非常重要。接触生物体液后,纳米结构表面会迅速被生物分子电晕覆盖。电晕的组成决定了纳米结构的生物命运。此外,在吸附时,蛋白质结构会受到影响。为了研究电晕形态,我们使用了两种模型蛋白,细胞外基质的层粘连蛋白和免疫系统酶髓过氧化物酶。我们通过冷冻 TEM 直接对蛋白质电晕成像,并通过用活化的金纳米颗粒标记电晕来提高分辨率。蛋白质电晕的三维成像进一步提高了分辨率并揭示了电晕地形的不规则性。通过这样做,我们确定了金纳米粒子和 NW 表面之间距离 NW 表面 58 和 85 nm 距离的层粘连蛋白电晕间距的双峰分布。日冕的双重地形增加了蛋白质日冕表面及其与周围生物相互作用的新复杂性。我们在距 NW 表面 58 和 85 nm 距离处确定了金纳米粒子和 NW 表面间距的双峰分布,用于层粘连蛋白电晕。日冕的双重地形增加了蛋白质日冕表面及其与周围生物相互作用的新复杂性。我们在距 NW 表面 58 和 85 nm 距离处确定了金纳米粒子和 NW 表面间距的双峰分布,用于层粘连蛋白电晕。日冕的双重地形增加了蛋白质日冕表面及其与周围生物相互作用的新复杂性。
更新日期:2020-11-02
down
wechat
bug