当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pd Supported on MIL-68(In)-Derived In2O3 Nanotubes as Superior Catalysts to Boost CO2 Hydrogenation to Methanol
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-11-02 , DOI: 10.1021/acscatal.0c03372
Zhongjie Cai 1 , Jiajun Dai 1 , Wen Li 2 , Kok Bing Tan 1 , Zhongliang Huang 3 , Guowu Zhan 3 , Jiale Huang 1 , Qingbiao Li 1, 4
Affiliation  

Utilization of CO2 and its conversion to value-added chemicals are highly desirable to alleviate the environmental concerns caused by the massive anthropogenic CO2 emission. Although In2O3/Pd have been employed as efficient catalysts for hydrogenation of CO2 to methanol, the electronic effects by strong metal–support interaction (SMSI) between Pd and In2O3 are poorly understood, which is greatly affected by the morphology of In2O3. Herein, we use MIL-68(In) nanorod as a morphological template for the synthesis of hollow In2O3 nanotubes (h-In2O3) and the preparation of supported Pd catalysts for CO2 hydrogenation to methanol. Interestingly, loading Pd on h-In2O3 showed a much higher performance than In2O3 with other morphologies, which exhibited almost unchanged CO2 conversion of 10.5%, methanol selectively of 72.4%, and methanol space-time yield of 0.53 gMeOH h–1 gcat–1 over 100 h on stream at 3 MPa and 295 °C. After in-depth characterizations, we found that the different electronic properties of Pd species on In2O3 can be finely tuned by diverse synthetic conditions, which were responsible for high activity and stability. The molar fraction of Pd2+ species in the h-In2O3/Pd catalyst reached 67.6%, 3.2 times that of the In2O3@Pd catalyst (21.3%), due to the different surface chemistry of In2O3. Density function theory results indicated that the Pd donated more electrons to the curved In2O3 (222) surface than the pristine surface, and Pd2+ was critical to facilitate H2 adsorption and formation of the surface oxygen vacancy. This work demonstrates that controlling the morphology of In2O3 can modify both the Pd electronic property and SMSI between Pd and In2O3, which are the origins of the high catalytic performance.

中文翻译:

Pd支撑在MIL-68(In)衍生的2 O 3纳米管中,作为促进CO 2加氢成甲醇的高级催化剂

利用CO 2并将其转化为增值化学品是非常需要的,以减轻由大量人为排放的CO 2引起的环境问题。尽管In 2 O 3 / Pd已被用作将CO 2加氢成甲醇的有效催化剂,但人们对Pd和In 2 O 3之间的强金属-载体相互作用(SMSI)产生的电子效应知之甚少,这受到了很大的影响。 In 2 O 3的形貌。在这里,我们使用MIL-68(In)纳米棒作为形态模板,用于合成中空的In 2 O 3纳米管(h-In 2 O 3)和用于CO 2加氢为甲醇的负载型Pd催化剂的制备。有趣的是,在h -In 2 O 3上负载Pd表现出比其他形态的In 2 O 3高得多的性能,其他形态的CO 2转化率几乎不变,为10.5%,甲醇选择性为72.4%,甲醇时空产率为0.53。 g MeOH h –1 g cat –1在3 MPa和295°C的条件下运行100 h以上。经过深入的表征,我们发现Pd物种在In 2 O上的不同电子性质3可以通过多种合成条件进行微调,这些合成条件具有很高的活性和稳定性。钯的摩尔分数2+在物种H-2 ö 3 /钯催化剂达到67.6%,即在3.2倍2 ö 3 @Pd催化剂(21.3%),由于在不同的表面化学2 ö 3。密度函数理论结果表明,Pd向弯曲的In 2 O 3(222)表面贡献的电子比原始表面多,Pd 2+对于促进H 2至关重要吸附并形成表面氧空位。这项工作表明,控制In 2 O 3的形态可以同时改变Pd和In 2 O 3之间的Pd电子性能和SMSI ,这是高催化性能的起源。
更新日期:2020-11-21
down
wechat
bug