当前位置: X-MOL 学术Electrophoresis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Miniaturized free‐flow electrophoresis: production, optimization, and application using 3D printing technology
Electrophoresis ( IF 3.0 ) Pub Date : 2020-10-31 , DOI: 10.1002/elps.202000149
John-Alexander Preuss 1 , Gia Nam Nguyen 1 , Virginia Berk 1 , Janina Bahnemann 1
Affiliation  

The increasing resolution of three‐dimensional (3D) printing offers simplified access to, and development of, microfluidic devices with complex 3D structures. Therefore, this technology is increasingly used for rapid prototyping in laboratories and industry. Microfluidic free flow electrophoresis (μFFE) is a versatile tool to separate and concentrate different samples (such as DNA, proteins, and cells) to different outlets in a time range measured in mere tens of seconds and offers great potential for use in downstream processing, for example. However, the production of μFFE devices is usually rather elaborate. Many designs are based on chemical pretreatment or manual alignment for the setup. Especially for the separation chamber of a μFFE device, this is a crucial step which should be automatized. We have developed a smart 3D design of a μFFE to pave the way for a simpler production. This study presents (1) a robust and reproducible way to build up critical parts of a μFFE device based on high‐resolution MultiJet 3D printing; (2) a simplified insertion of commercial polycarbonate membranes to segregate separation and electrode chambers; and (3) integrated, 3D‐printed wells that enable a defined sample fractionation (chip‐to‐world interface). In proof of concept experiments both a mixture of fluorescence dyes and a mixture of amino acids were successfully separated in our 3D‐printed μFFE device.

中文翻译:

小型化自由流动电泳:使用 3D 打印技术的生产、优化和应用

三维 (3D) 打印分辨率的提高为具有复杂 3D 结构的微流体设备的访问和开发提供了简化。因此,该技术越来越多地用于实验室和工业中的快速原型制作。微流体自由流动电泳 (μFFE) 是一种多功能工具,可在仅几十秒的时间范围内将不同样品(如 DNA、蛋白质和细胞)分离和浓缩到不同的出口,并为下游处理提供了巨大的潜力,例如。然而,μFFE 器件的生产通常相当复杂。许多设计基于化学预处理或手动对齐设置。特别是对于 μFFE 设备的分离室,这是应该自动化的关键步骤。我们开发了 μFFE 的智能 3D 设计,为更简单的生产铺平了道路。这项研究提出了 (1) 基于高分辨率 MultiJet 3D 打印构建 μFFE 设备关键部件的稳健且可重复的方法;(2) 商业聚碳酸酯膜的简化插入以隔离分离室和电极室;(3) 集成的 3D 打印孔,可实现定义的样品分馏(芯片到世界的界面)。在概念验证实验中,我们的 3D 打印 μFFE 装置成功分离了荧光染料混合物和氨基酸混合物。(2) 商业聚碳酸酯膜的简化插入以隔离分离室和电极室;(3) 集成的 3D 打印孔,可实现定义的样品分馏(芯片到世界的界面)。在概念验证实验中,我们的 3D 打印 μFFE 装置成功分离了荧光染料混合物和氨基酸混合物。(2) 商业聚碳酸酯膜的简化插入以隔离分离室和电极室;(3) 集成的 3D 打印孔,可实现定义的样品分馏(芯片到世界的界面)。在概念验证实验中,我们的 3D 打印 μFFE 装置成功分离了荧光染料混合物和氨基酸混合物。
更新日期:2020-10-31
down
wechat
bug