当前位置: X-MOL 学术IEEJ Trans. Electr. Electron. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Novel Distributed Dynamic Economic Dispatch Based on Dual ADMM and IPM
IEEJ Transactions on Electrical and Electronic Engineering ( IF 1.0 ) Pub Date : 2020-11-02 , DOI: 10.1002/tee.23267
Linfeng Yang 1 , Jingdan He 1 , Wei Li 2 , Jinbao Jian 2, 3 , Chunming Tang 4
Affiliation  

This paper presents a novel distributed method for dynamic economic dispatch (DED) problems with cubic fuel cost functions based on the dual alternating direction method of multipliers (D‐ADMM) and interior point method (IPM). This scheme enables us to combine the excellent parallelism of ADMM with the superior convergence properties of the IPM. The idea adopted by the proposed algorithm is that the outer‐loop uses ADMM decoupling, and the inner‐loop uses IPM to solve the cubic polynomial optimization subproblems. When the unit set is divided into multiple partitions, D‐ADMM also has the nice central processing unit (CPU) runtime as the well as the number of iterations. In addition, we use a Decoupling‐Decomposition‐Backtracking and parallel improved multiple centrality corrections decoupling interior point method (DDB‐PIMCCD) to solve the aforementioned larger subproblems more efficiently. Finally, the numerical results, in both serial and parallel modes, on a set of 22 DED cases with the range of units from 8 to 1000 units show that the proposed method is very promising for large scale distributed DED problems. Because it can keep the unit information about each subset in secret to suit the market environment and can obtain high‐quality solutions with reasonable time. © 2020 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

中文翻译:

基于双ADMM和IPM的新型分布式动态经济调度

本文基于乘数对偶交替方向法(D-ADMM)和内点法(IPM),提出了一种具有立方燃料成本函数的动态经济调度(DED)问题的分布式方法。该方案使我们能够将ADMM的出色并行性与IPM的出色收敛性相结合。该算法采用的思想是,外环使用ADMM解耦,内环使用IPM解决三次多项式优化子问题。将单元集划分为多个分区时,D‐ADMM还具有出色的中央处理器(CPU)运行时以及迭代次数。此外,我们使用去耦-分解-回溯和并行改进的多重中心校正去耦内点方法(DDB-PIMCCD)来更有效地解决上述较大的子问题。最后,在22种DED情况下,从8个到1000个单位的范围,在串行和并行模式下的数值结果表明,该方法对于大规模分布式DED问题非常有希望。因为它可以将有关每个子集的单位信息保密,以适应市场环境,并且可以在合理的时间内获得高质量的解决方案。©2020日本电气工程师学会。由Wiley Periodicals LLC发布。在一组22个DED案例中,单位范围从8到1000个单位表明,该方法对于大规模分布式DED问题非常有希望。因为它可以将有关每个子集的单位信息保密,以适应市场环境,并且可以在合理的时间内获得高质量的解决方案。©2020日本电气工程师学会。由Wiley Periodicals LLC发布。在一组22个DED案例中,单位范围从8到1000个单位表明,该方法对于大规模分布式DED问题非常有希望。因为它可以将有关每个子集的单位信息保密,以适应市场环境,并且可以在合理的时间内获得高质量的解决方案。©2020日本电气工程师学会。由Wiley Periodicals LLC发布。
更新日期:2020-12-20
down
wechat
bug