当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impacts of Greenland Block Location on Clouds and Surface Energy Fluxes Over the Greenland Ice Sheet
Journal of Geophysical Research: Atmospheres ( IF 3.8 ) Pub Date : 2020-10-31 , DOI: 10.1029/2020jd033172
Jamie L. Ward 1 , Mark G. Flanner 1 , Etienne Dunn‐Sigouin 2
Affiliation  

Clouds and blocking activity have been implicated as causes of increased Greenland Ice Sheet (GrIS) melt in the 21st century. Although Greenland blocks (i.e., long‐lasting, mostly stationary anticyclones) generally reduce cloud cover and move warm air over Greenland, the elevated GrIS perturbs air and moisture transport in complex ways, implying a need to better understand how blocks affect cloud and surface energy flux anomaly patterns. In this study, we use a combination of daily MODIS cloud data and meteorological and energy flux data from MERRA‐2 reanalysis to better understand how Greenland block location, separated into four equal‐area quadrants, affects regional cloud and surface energy flux spatial patterns in the summer months of 2002–2018. Overall, cloud fraction and cloud water path reductions are approximately four times greater during northern block days than southern block days. Net cloud radiative forcing anomalies are negative for all Greenland block locations because negative longwave cloud radiative forcing anomalies exceed positive shortwave cloud radiative forcing changes. However, greater cloud cover reductions during northern block days produce more negative net cloud radiative forcing anomalies than southern block days. Greenland‐average (i.e., latitude‐weighted average of all GrIS grids) net surface energy flux anomalies range from +7 to +12W/m2 for all block quadrants. While net shortwave energy anomalies dominate the total surface energy response during western Greenland block days, sensible heating is responsible for approximately half of positive total surface energy change during eastern Greenland block days.

中文翻译:

格陵兰岛位置对格陵兰冰原上云和表面能通量的影响

在21世纪格陵兰冰盖(GrIS)融化增加的原因中涉及云和阻塞活动。尽管格陵兰岛的块体(例如,持久的,主要是静止的反旋风器)通常会减少云层的覆盖并使温暖的空气移动到格陵兰岛上,但是升高的GrIS会以复杂的方式干扰空气和水分的输送,这意味着需要更好地了解块体如何影响云层和表面能通量异常模式。在这项研究中,我们结合使用了每日MODIS云数据和MERRA-2再分析的气象和能量通量数据,以更好地了解格陵兰地块位置(分为四个相等区域的象限)如何影响区域云和地表能量通量的空间格局。 2002-2018年夏季。总体,在北部地区,云量减少和云水路径减少量大约是南部地区的四倍。对于所有格陵兰岛位置,净云辐射强迫异常均为负,因为负长波云辐射强迫异常超过了正短波云辐射强迫变化。但是,与南部地区相比,北部地区白天更大的云量减少会产生更多的负净云辐射强迫异常。格陵兰平均(即所有GrIS网格的纬度加权平均值)的净表面能通量异常范围为 但是,与南部地区相比,北部地区白天更大的云量减少会产生更多的负净云辐射强迫异常。格陵兰平均(即所有GrIS网格的纬度加权平均值)的净表面能通量异常范围为 但是,与南部地区相比,北部地区白天更大的云量减少会产生更多的负净云辐射强迫异常。格陵兰平均(即所有GrIS网格的纬度加权平均值)的净表面能通量异常范围为所有块象限为+7+ 12W / m 2。尽管净短波能量异常主导了格陵兰岛西部地区白天的总地表能量响应,但合理的采暖是格陵兰岛东部地区白天总的正地表能量变化的一半。
更新日期:2020-11-23
down
wechat
bug