当前位置: X-MOL 学术Sustain. Comput. Inform. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Circuit Designs of Carry Lookahead Adder Optimized for T-count T-depth and Qubits
Sustainable Computing: Informatics and Systems ( IF 3.8 ) Pub Date : 2020-11-02 , DOI: 10.1016/j.suscom.2020.100457
Himanshu Thapliyal , Edgard Muñoz-Coreas , Vladislav Khalus

Quantum circuits of arithmetic operations such as addition are needed to implement quantum algorithms in hardware. Quantum circuits based on Clifford+T gates are used as they can be made tolerant to noise. The trade-off of gaining fault tolerance from using Clifford+T gates and error-correcting codes is the high implementation overhead of the T gate. As a result, the T-count and T-depth performance measures have become important in quantum circuit design. Due to noise, the risk for errors in a quantum circuit computation increases as the number of gate layers (or depth) in the circuit increases. As a result, low depth circuits such as quantum carry lookahead adders (QCLA)s have caught the attention of researchers. This work presents two QCLA designs each optimized with emphasis on T-count and T-depth or qubit cost, respectively. In-place and out-of-place versions of each design are shown. The proposed QCLAs are compared against the existing works in terms of T-count and T-depth. The proposed QCLAs for out-of-place addition achieve average T-count savings of 54.34% and 37.21%, respectively. The proposed QCLAs for out-of-place addition achieve up to a 33.33% reduction in T-depth. The proposed QCLAs for in-place addition achieve average T-count savings of 65.31% and 30.63%, respectively. When compared to existing works, the proposed QCLAs for in-place addition achieves T-depth savings ranging from 33.33% to 95.56%.



中文翻译:

针对T计数T深度和Qubits优化的超前进位加法器的量子电路设计

需要算术运算(例如加法)的量子电路才能在硬件中实现量子算法。使用基于Clifford + T门的量子电路,因为它们可以容忍噪声。通过使用Clifford + T门和纠错码来获得容错功能的权衡是T门的高实现开销。结果,T计数和T深度性能测量在量子电路设计中变得重要。由于噪声,随着电路中栅极层(或深度)数量的增加,量子电路计算中出错的风险也会增加。结果,诸如量子进位超前加法器(QCLA)之类的低深度电路引起了研究人员的注意。这项工作提出了两个QCLA设计,每个设计都分别以T计数和T深度或qubit成本为重点进行了优化。显示了每个设计的就地和就地版本。拟议的QCLA在T数和T深度方面与现有工作进行了比较。建议的异地添加QCLA分别实现平均T值节省54.34%和37.21%。拟议的用于就地添加的QCLA可将T深度降低多达33.33%。拟议的就地添加QCLA分别实现平均T值节省65.31%和30.63%。与现有工程相比,拟议的就地添加QCLA可以节省T深度,范围从33.33%到95.56%。拟议的用于就地添加的QCLA可将T深度降低多达33.33%。拟议的就地添加QCLA分别实现平均T值节省65.31%和30.63%。与现有工程相比,拟议的就地添加QCLA可以节省T深度,范围从33.33%到95.56%。拟议的用于就地添加的QCLA可将T深度降低多达33.33%。拟议的就地添加QCLA分别实现平均T值节省65.31%和30.63%。与现有工程相比,拟议的就地添加QCLA可以节省T深度,范围从33.33%到95.56%。

更新日期:2020-11-02
down
wechat
bug