当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanics of unusual soft network materials with rotatable structural nodes
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2020-10-31 , DOI: 10.1016/j.jmps.2020.104210
Jianxing Liu , Dongjia Yan , Yihui Zhang

Soft network materials consisting of filamentary horseshoe microstructures represent a class of architected materials of practical interest in flexible, bio-integrated electronics, because they can be tailored to reproduce accurately nonlinear stress−strain responses of biological tissues. The previous studies of these bio-inspired soft network materials focused mostly on the intriguing mechanical responses (e.g., J-shaped stress-strain curves and negative Poisson's ratios) before their fracture, and paid little attention on their utmost strength and stretchability. The development of soft network materials that can offer both a high stretchability (e.g., > 100%) and a relatively high strength (e.g., > 50 MPa) remains challenging. This paper presents the design, mechanics modeling and experimental measurement of a novel type of soft network materials that introduce rotatable structural lattice nodes (either with ring or disk shapes) to offer an enhanced deformability. Based on the analyses of the periodic building-block structure, we develop a nonlinear mechanics model of unusual soft network materials made of elastic constituent materials. Validated by finite element analyses (FEA) and experiments, this theoretical model can well predict the J-shaped stress-strain curves and deformed configurations of unusual soft network materials with a variety of geometric parameters. The results based on the developed model provide insights into the underlying relationship between nonlinear mechanical properties and key geometric parameters. For unusual soft network materials made of metals, an Ashby plot in terms of the strength and the stretchability is presented, highlighting the advantages of developed network materials over the existing network materials and typical soft materials. Moreover, computational models based on representative unit cells with periodic boundary conditions allow precise predictions of the utmost strength and stretchability, which can thereby serve as a reliable design tool. Due to the combined mechanical attributes of high stretchability, relatively high strength, and negative Poisson's ratio, the proposed unusual soft network materials can be used in various device systems of bio-integrated electronics.



中文翻译:

具有可旋转结构节点的异常软网络材料的力学

由纤维状马蹄形微结构组成的软网络材料代表了一类在柔性,生物集成电子产品中具有实际应用价值的建筑材料,因为可以对其进行定制以精确地再现生物组织的非线性应力应变响应。这些受生物启发的软网络材料的先前研究主要集中在断裂之前的有趣的机械响应(例如,J型应力-应变曲线和负泊松比)上,而对其最大强度和可拉伸性却很少关注。既可以提供高拉伸性(例如,> 100%)又可以提供相对较高的强度(例如,> 50 MPa)的软网络材料的开发仍然具有挑战性。本文介绍了设计,新型软网络材料的力学建模和实验测量,这些材料引入了可旋转的结构晶格节点(具有环形或圆盘形状)以提供增强的可变形性。在对周期性积木结构进行分析的基础上,我们建立了由弹性构成材料制成的非常规软网络材料的非线性力学模型。通过有限元分析(FEA)和实验验证,该理论模型可以很好地预测具有各种几何参数的非常规软网络材料的J形应力应变曲线和变形构型。基于已开发模型的结果提供了对非线性机械性能和关键几何参数之间的潜在关系的深刻见解。对于由金属制成的非常规软网络材料,给出了有关强度和可拉伸性的Ashby图,突出了已开发的网络材料相对于现有网络材料和典型软质材料的优势。此外,基于具有周期性边界条件的代表性晶胞的计算模型可以对最大强度和可拉伸性进行精确预测,从而可以用作可靠的设计工具。由于具有高拉伸性,相对较高的强度和负的泊松比的综合机械特性,因此所提出的非常规软网络材料可用于生物集成电子的各种设备系统中。基于具有周期性边界条件的代表性晶胞的计算模型可以对最大强度和可拉伸性进行精确预测,从而可以用作可靠的设计工具。由于具有高拉伸性,相对较高的强度和负的泊松比的综合机械特性,因此所提出的非常规软网络材料可用于生物集成电子的各种设备系统中。基于具有周期性边界条件的代表性晶胞的计算模型可以对最大强度和可拉伸性进行精确预测,从而可以用作可靠的设计工具。由于具有高拉伸性,相对较高的强度和负的泊松比的综合机械特性,因此所提出的非常规软网络材料可用于生物集成电子的各种设备系统中。

更新日期:2020-11-06
down
wechat
bug