当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of microstructure and microtexture modified by magnetic field on as-weld notch bending performance
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.jmatprotec.2020.116958
Zhengwu Zhu , Xiuquan Ma , Chunming Wang , Gaoyang Mi , Hu Chongjing , Shuye Zheng

Abstract A 10 mm 316 L stainless steel, filled by 1.2 mm 316 LSi, was joined using multi-layer laser-GMAW in the presence of a constant magnetic field. Results suggested that the addition of a 18 m T magnetic field resulted in an optimized weld bead formation with asymmetrical fusion line and grain growth by stabilizing the arc morphology and droplet transfer in the narrow gap. The interaction of arc current and magnetic field differed in central and columnar zones with a moving heat source such that refinement was relatively obvious in the columnar zone. These two zones were dominated by high angle grain boundaries (HAGBs: 15°-60°) and the magnetic field potentially strengthen both the fraction and density. Due to the induced rotation and deflection behavior in austenite (γ) grain growth, the applied magnetic field progressively decreased the texture density of (010)[101] in columnar zones while altered (051)[6 1 - 5] , (032)[6 2 - 3] and (011)[3 2 - 2] to (001)[3 1 - 0] and (001)[1 2 - 0] in central zones. Refinement of γ grains was attributable to the fragment, rotation and deflection of ferrite and associated γ assemblies under axial torques induced by the magnetic field and arc current. Also, γ grain refinement and texture alternation of the central and columnar zones decrease the notch sensitivity of the weld bead. These results and findings suggested a novel means for improving the weld quality of thick plates with favorable microstructure and microtexture using an external magnetic field.

中文翻译:

磁场改性显微组织和显微织构对焊缝缺口弯曲性能的影响

摘要 10 mm 316 L 不锈钢,填充1.2 mm 316 LSi,在恒定磁场下使用多层激光-GMAW 进行接合。结果表明,通过稳定电弧形态和窄间隙中的熔滴转移,增加 18 m T 磁场导致优化的焊道形成具有不对称熔合线和晶粒生长。中心区和柱状区电弧电流和磁场的相互作用在热源移动的情况下不同,柱状区细化相对明显。这两个区域以大角度晶界(HAGB:15°-60°)为主,磁场可能会增强分数和密度。由于奥氏体 (γ) 晶粒生长中的诱导旋转和偏转行为,外加磁场逐渐降低柱状区(010)[101]的织构密度,同时改变(051)[6 1 - 5]、(032)[6 2 - 3]和(011)[3 2 - 2]到 (001)[3 1 - 0] 和 (001)[1 2 - 0] 在中心区域。γ晶粒的细化归因于在磁场和电弧电流引起的轴向扭矩下铁氧体和相关γ组件的碎片、旋转和偏转。此外,γ 晶粒细化和中心区和柱状区的织构交替降低了焊道的缺口敏感性。这些结果和发现提出了一种使用外部磁场改善具有良好微观结构和显微组织的厚板焊接质量的新方法。(032)[6 2 - 3] 和 (011)[3 2 - 2] 到 (001)[3 1 - 0] 和 (001)[1 2 - 0] 在中心区域。γ晶粒的细化归因于在磁场和电弧电流引起的轴向扭矩下铁氧体和相关γ组件的碎片、旋转和偏转。此外,γ 晶粒细化和中心区和柱状区的织构交替降低了焊道的缺口敏感性。这些结果和发现提出了一种使用外部磁场改善具有良好微观结构和显微组织的厚板焊接质量的新方法。(032)[6 2 - 3] 和 (011)[3 2 - 2] 到 (001)[3 1 - 0] 和 (001)[1 2 - 0] 在中心区域。γ晶粒的细化归因于在磁场和电弧电流引起的轴向扭矩下铁氧体和相关γ组件的碎片、旋转和偏转。此外,γ 晶粒细化和中心区和柱状区的织构交替降低了焊道的缺口敏感性。这些结果和发现提出了一种使用外部磁场改善具有良好微观结构和显微组织的厚板焊接质量的新方法。中心区和柱状区的γ晶粒细化和织构交替降低了焊道的缺口敏感性。这些结果和发现提出了一种使用外部磁场改善具有良好微观结构和显微组织的厚板焊接质量的新方法。中心区和柱状区的γ晶粒细化和织构交替降低了焊道的缺口敏感性。这些结果和发现提出了一种使用外部磁场改善具有良好微观结构和显微组织的厚板焊接质量的新方法。
更新日期:2021-03-01
down
wechat
bug