当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comparative study on system performances of multi-split air source heat pump with different energy accumulators and storage methods
Energy and Buildings ( IF 6.7 ) Pub Date : 2020-10-31 , DOI: 10.1016/j.enbuild.2020.110588
Jiankai Dong , Long Zhang , Yiqiang Jiang

Adding an energy accumulator to an air source heat pump (ASHP) unit can significantly improve its defrosting performances. However, the added energy accumulator may impact the system performances during heating period, which was rarely investigated in the published studies, especially for multi-split ASHP units (a kind of more and more widely used ASHP unit). In this paper, a comparative study on system performances of a multi-split ASHP unit under frosting condition with different energy accumulator structures and energy storage methods was experimentally carried out. The experimental results showed that the multi-ASHP unit employing fin-tube energy accumulator with serial energy storage method can achieve the longest heating period, which was 3.3%, 13.4%, and 9.4% longer than that employing spiral-tube energy accumulator with serial energy storage method, spiral-tube energy accumulator with parallel energy storage method, and fin-tube energy accumulator with parallel energy storage method, respectively. For spiral-tube energy accumulator using serial energy storage method, using parallel energy storage method, can shorten the energy storage period from 59 to 33 min. For fin-tube energy accumulator using serial energy storage method, using parallel energy storage method can shorten the energy storage period from 33 to 6 min. In addition, compared to serial energy storage method, using parallel energy storage method may significantly reduce the heating capacity, input power and heating COP of the multi-split ASHP unit during the energy storage period.



中文翻译:

不同蓄能器和存储方式的多分裂空气源热泵系统性能比较研究

在空气源热泵(ASHP)单元中添加蓄能器可以显着改善其除霜性能。但是,增加的蓄能器可能会在加热期间影响系统性能,这在已发表的研究中很少进行调查,尤其是对于多分裂式ASHP单元(一种越来越广泛使用的ASHP单元)。本文对结霜条件下具有不同蓄能器结构和储能方法的多分裂ASHP装置的系统性能进行了比较研究。实验结果表明,采用翅片管蓄能器的串联式储能方式的多ASHP机组可达到最长的加热时间,分别为3.3%,13.4%和9。分别比采用串联储能方式的螺旋管式储能器,并联储能方式的螺旋管式储能器和并联储能方式的翅片管式储能器长4%。对于采用串联储能方式的螺旋管式储能器,采用并联储能方式,可以将储能时间从59分钟缩短至33分钟。对于采用串联储能方式的翅片管储能器,采用并联储能方式可以将储能时间从33分钟缩短到6分钟。另外,与串行能量存储方法相比,使用并行能量存储方法可以在能量存储期间显着降低多分裂ASHP单元的加热能力,输入功率和加热COP。分别采用并联储能的螺旋管式蓄能器和采用并联储能的翅片管式蓄能器。对于采用串联储能方式的螺旋管式储能器,采用并联储能方式,可以将储能时间从59分钟缩短至33分钟。对于采用串联储能方式的翅片管储能器,采用并联储能方式可以将储能时间从33分钟缩短到6分钟。另外,与串行能量存储方法相比,使用并行能量存储方法可以在能量存储期间显着降低多分裂ASHP单元的加热能力,输入功率和加热COP。分别采用并联储能的螺旋管式蓄能器和采用并联储能的翅片管式蓄能器。对于采用串联储能方式的螺旋管式储能器,采用并联储能方式,可以将储能时间从59分钟缩短至33分钟。对于采用串联储能方式的翅片管储能器,采用并联储能方式可以将储能时间从33分钟缩短到6分钟。另外,与串行能量存储方法相比,使用并行能量存储方法可以在能量存储期间显着降低多分裂ASHP单元的加热能力,输入功率和加热COP。对于采用串联储能方式的螺旋管式储能器,采用并联储能方式,可以将储能时间从59分钟缩短至33分钟。对于采用串联储能方式的翅片管储能器,采用并联储能方式可以将储能时间从33分钟缩短到6分钟。另外,与串行能量存储方法相比,使用并行能量存储方法可以在能量存储期间显着降低多分裂ASHP单元的加热能力,输入功率和加热COP。对于采用串联储能方式的螺旋管式储能器,采用并联储能方式,可以将储能时间从59分钟缩短至33分钟。对于采用串联储能方式的翅片管储能器,采用并联储能方式可以将储能时间从33分钟缩短到6分钟。另外,与串行能量存储方法相比,使用并行能量存储方法可以在能量存储期间显着降低多分裂ASHP单元的加热能力,输入功率和加热COP。

更新日期:2020-11-02
down
wechat
bug