当前位置: X-MOL 学术J. Dyn. Diff. Equat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of Induced Maps on the Space of Probability Measures
Journal of Dynamics and Differential Equations ( IF 1.4 ) Pub Date : 2020-10-31 , DOI: 10.1007/s10884-020-09909-5
Hua Shao , Hao Zhu , Guanrong Chen

For a continuous self-map f on a compact metric space X, we provide two simple examples: the first confirms that shadowing of (Xf) is not inherited by \(({\mathcal {M}}(X),{\hat{f}})\) in general, and the other satisfies that both (Xf) and \(({\mathcal {M}}(X),{\hat{f}})\) have no Li–Yorke pair, where \({\mathcal {M}}(X)\) be the space of all Borel probability measures on X. Then we prove that chain transitivity of (Xf) implies chain mixing of \(({\mathcal {M}}(X),{\hat{f}})\), and provide an example to deny the converse. For a non-autonomous system \((X,f_{0,\infty })\), we prove that weak mixing of \(({\mathcal {M}}(X),\hat{f}_{0,\infty })\) implies that of \((X,f_{0,\infty })\), and give an example to deny the converse, where \(f_{0,\infty }=\{f_n\}_{n=0}^\infty \) is a sequence of continuous self-maps on X. We also prove that if \(f_n\) is surjective for all \(n\ge 0\), then chain mixing of \(({\mathcal {M}}(X),{\hat{f}}_{0,\infty })\) always holds true, and shadowing of \(({\mathcal {M}}(X),{\hat{f}}_{0,\infty })\) implies mixing of \((X, f_{0,\infty })\). If \(X=I\) is an interval, we obtain a sharp condition such that transitivity is equivalent between (If) and \(({\mathcal {M}}(I),{\hat{f}})\). Although \(({\mathcal {M}}(I),{\hat{f}})\) has infinite topological entropy for any transitive system (If), we give an example such that \((I,f_{0,\infty })\) is transitive but \(({\mathcal {M}}(I),{\hat{f}}_{0,\infty })\) has zero topological entropy.



中文翻译:

概率测度空间上归纳图的动力学

对于紧凑度量空间X上的连续自映射f,我们提供两个简单的示例:第一个示例确认(X,  f)的阴影不被\(({{mathcal {M}}(X),{ \帽子{F}})\)在一般情况下,与其他满足这两个(X,  ˚F)和\(({\ mathcal {M}}(X){\帽子{F}})\)没有锂约克对,其中\({\ mathcal {M}}(X)\)是关于所有的Borel概率测度空间X。然后我们证明(X,  f)的链传递性意味着\(({{数学{M}}(X),{\ hat {f}})\)\)的链混合,并提供一个示例来说明相反的情况。对于非自治系统\((X,f_ {0,\ infty})\),我们证明了\(({\ mathcal {M}}(X),\ hat {f} _ {0 ,\ infty}} \)表示\((X,f_ {0 ,\ infty})\)的含义,并举例说明拒绝进行相反的处理,其中\(f_ {0,\ infty} = \ {f_n \ } _ {n = 0} ^ \ infty \)X上一系列连续的自映射。我们还证明,如果\(f_n \)对于所有\(n \ ge 0 \)都是射影,则\(({{mathcal {M}}(X),{\ hat {f}} __ { 0,\ infty}} \)始终为真,\(({\ mathcal {M}}(X),{\ hat {f}} _ {0,\ infty})\\的阴影表示\ ((X,f_ {0,\ infty})\)。如果\(X = I \)是一个间隔,我们得到一个尖锐的条件,使得(I,  f)和\(({{\ mathcal {M}}(I),{\ hat {f}} )\)。尽管\(({{mathcal {M}}(I),{\ hat {f}})\)对于任何传递系统(I,  f)都有无限大的拓扑熵,但我们举一个例子,使\((I, f_ {0,\ infty}} \)是可传递的,但是\(({{mathcal {M}}(I),{\ hat {f}} _ {0,\ infty}} \\}的拓扑熵为零。

更新日期:2020-11-02
down
wechat
bug