当前位置: X-MOL 学术Open Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The aerobic mitochondrial ATP synthesis from a comprehensive point of view
Open Biology ( IF 4.5 ) Pub Date : 2020-10-21 , DOI: 10.1098/rsob.200224
Alessandro Maria Morelli 1 , Silvia Ravera 2 , Isabella Panfoli 1
Affiliation  

Most of the ATP to satisfy the energetic demands of the cell is produced by the F1Fo-ATP synthase (ATP synthase) which can also function outside the mitochondria. Active oxidative phosphorylation (OxPhos) was shown to operate in the photoreceptor outer segment, myelin sheath, exosomes, microvesicles, cell plasma membranes and platelets. The mitochondria would possess the exclusive ability to assemble the OxPhos molecular machinery so to share it with the endoplasmic reticulum (ER) and eventually export the ability to aerobically synthesize ATP in true extra-mitochondrial districts. The ER lipid rafts expressing OxPhos components is indicative of the close contact of the two organelles, bearing different evolutionary origins, to maximize the OxPhos efficiency, exiting in molecular transfer from the mitochondria to the ER. This implies that its malfunctioning could trigger a generalized oxidative stress. This is consistent with the most recent interpretations of the evolutionary symbiotic process whose necessary prerequisite appears to be the presence of the internal membrane system inside the eukaryote precursor, of probable archaeal origin allowing the engulfing of the α-proteobacterial precursor of mitochondria. The process of OxPhos in myelin is here studied in depth. A model is provided contemplating the biface arrangement of the nanomotor ATP synthase in the myelin sheath.



中文翻译:

从综合角度看有氧线粒体ATP合成

满足细胞能量需求的大部分 ATP 是由 F 1 F o 产生的-ATP 合酶(ATP 合酶),它也可以在线粒体外发挥作用。活性氧化磷酸化 (OxPhos) 显示在光感受器外段、髓鞘、外泌体、微泡、细胞质膜和血小板中起作用。线粒体将拥有组装 OxPhos 分子机制的独有能力,以便与内质网 (ER) 共享它,并最终输出在真正的线粒体外区域有氧合成 ATP 的能力。表达 OxPhos 成分的内质网脂筏表明两个细胞器的密切接触,具有不同的进化起源,以最大限度地提高 OxPhos 效率,从线粒体到内质网的分子转移中退出。这意味着它的故障可能会引发普遍的氧化应激。这与进化共生过程的最新解释一致,其必要的先决条件似乎是真核生物前体内部存在内部膜系统,可能是古菌起源,允许吞噬线粒体的α-变形菌前体。这里深入研究了髓鞘中 OxPhos 的过程。提供了一个模型,考虑了髓鞘中纳米运动 ATP 合酶的双面排列。

更新日期:2020-10-30
down
wechat
bug