当前位置: X-MOL 学术J. Eur. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Riemann–Roch isometries in the non-compact orbifold setting
Journal of the European Mathematical Society ( IF 2.5 ) Pub Date : 2020-08-04 , DOI: 10.4171/jems/992
Gerard Freixas i Montplet 1 , Anna-Maria von Pippich 2
Affiliation  

We generalize work of Deligne and Gillet-Soule on a Riemann-Roch type isometry, to the case of the trivial sheaf on cusp compactifications of Riemann surfaces $\Gamma\backslash\mathbb{H}$, for $\Gamma\subset PSL_{2}(\mathbb{R})$ a fuchsian group of the first kind, equipped with the Poincare metric. This metric is singular at cusps and elliptic fixed points, and the results of Deligne and Gillet-Soule do not apply to this setting. Our theorem relates the determinant of cohomology of the trivial sheaf, with an explicit Quillen type metric in terms of the Selberg zeta function of $\Gamma$, to a metrized version of the $\psi$ line bundle of the theory of moduli spaces of pointed orbicurves, and the self-intersection bundle of a suitable twist of the canonical sheaf $\omega_{X}$. We make use of surgery techniques through Mayer-Vietoris formulae for determinants of laplacians, in order to reduce to explicit evaluations of such for model hyperbolic cusps and cones. We derive an arithmetic Riemann-Roch formula, that applies in particular to integral models of modular curves with elliptic fixed points. As an application, we treat in detail the case of the modular curve $X(1)$. From this, we obtain the Selberg zeta special value $Z^{\prime}(1,PSL_{2}(\mathbb{Z}))$ in terms of logarithmic derivatives of Dirichlet $L$ functions. Our work finds its place in the program initiated by Burgos-Kramer-Kuhn of extending arithmetic intersection theory to singular hermitian vector bundles.

中文翻译:

非紧邻双折环境中的黎曼-罗赫等距

我们将 Deligne 和 Gillet-Soule 在 Riemann-Roch 型等距上的工作推广到黎曼曲面 $\Gamma\backslash\mathbb{H}$ 的尖点紧化上的平凡层的情况,对于 $\Gamma\subset PSL_{ 2}(\mathbb{R})$ 第一类 fuchsian 群,配备 Poincare 度量。此度量在尖端和椭圆不动点处是奇异的,Deligne 和 Gillet-Soule 的结果不适用于此设置。我们的定理将平凡层的上同调的行列式联系起来,根据 $\Gamma$ 的 Selberg zeta 函数具有明确的 Quillen 类型度量,与模空间理论的 $\psi$ 线丛的度量化版本尖的弧形曲线,以及规范层 $\omega_{X}$ 的合适扭曲的自交丛。我们通过 Mayer-Vietoris 公式利用手术技术来计算拉普拉斯算子的决定因素,以减少对模型双曲线尖峰和锥体的明确评估。我们推导出算术 Riemann-Roch 公式,该公式特别适用于具有椭圆不动点的模曲线的积分模型。作为一个应用,我们详细处理模曲线$X(1)$的情况。由此,我们根据 Dirichlet $L$ 函数的对数导数获得 Selberg zeta 特殊值 $Z^{\prime}(1,PSL_{2}(\mathbb{Z}))$。我们的工作在 Burgos-Kramer-Kuhn 发起的将算术相交理论扩展到奇异厄密向量丛的计划中占有一席之地。我们推导出算术 Riemann-Roch 公式,该公式特别适用于具有椭圆不动点的模曲线的积分模型。作为一个应用,我们详细处理模曲线$X(1)$的情况。由此,我们根据 Dirichlet $L$ 函数的对数导数获得 Selberg zeta 特殊值 $Z^{\prime}(1,PSL_{2}(\mathbb{Z}))$。我们的工作在 Burgos-Kramer-Kuhn 发起的将算术相交理论扩展到奇异厄密向量丛的计划中占有一席之地。我们推导出算术 Riemann-Roch 公式,该公式特别适用于具有椭圆不动点的模曲线的积分模型。作为一个应用,我们详细处理模曲线$X(1)$的情况。由此,我们根据 Dirichlet $L$ 函数的对数导数获得 Selberg zeta 特殊值 $Z^{\prime}(1,PSL_{2}(\mathbb{Z}))$。我们的工作在 Burgos-Kramer-Kuhn 发起的将算术相交理论扩展到奇异厄米向量丛的计划中占有一席之地。
更新日期:2020-08-04
down
wechat
bug