Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LATICS: A Low-overhead Adaptive Task-based Intermittent Computing System
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ( IF 2.9 ) Pub Date : 2020-11-01 , DOI: 10.1109/tcad.2020.3012214
Songran Liu , Wei Zhang , Mingsong Lv , Qiulin Chen , Nan Guan

Energy harvesting promises to power billions of Internet-of-Things devices without being restricted by battery life. The energy output of harvesters is typically tiny and highly unstable, so the computing system must store program states into nonvolatile memory frequently to preserve the execution progress in the presence of frequent power failures. Task-based intermittent computing is a promising paradigm to provide such capability, where each task executes atomically and only states across task boundaries need to be saved. This article presents LATICS, a low-overhead adaptive task-based intermittent computing system, which dynamically decides the granularity of atomic execution to avoid unnecessarily frequent state saving when energy supply is sufficient. The novel feature of LATICS is to drastically reduce the amount of states to be saved at task boundaries compared with existing solutions. Notably, we disclose that skipping state saving at some task boundary may cause the system to store more states at other places, and thus leads to higher overall overhead. Therefore, LATICS enforces mandatory state saving at certain task boundaries regardless of the current energy condition to reduce state saving overhead. We implement LATICS on a real energy-harvesting platform based on MSP430 and experimentally compare against the state-of-the-art under different settings. The experimental results show that LATICS significantly reduces state saving overhead and improves execution efficiency compared to existing solutions.

中文翻译:

LATICS:一种低开销自适应基于任务的间歇计算系统

能量收集有望在不受电池寿命限制的情况下为数十亿物联网设备供电。采集器的能量输出通常很小且非常不稳定,因此计算系统必须经常将程序状态存储到非易失性存储器中,以在频繁断电的情况下保持执行进度。基于任务的间歇计算是提供这种能力的一种很有前途的范例,其中每个任务都以原子方式执行,并且只需要保存跨越任务边界的状态。本文介绍了 LATICS,一种基于低开销自适应任务的间歇计算系统,它动态决定原子执行的粒度,以避免在能量供应充足的情况下进行不必要的频繁状态保存。与现有解决方案相比,LATICS 的新特性是大幅减少要在任务边界保存的状态数量。值得注意的是,我们公开了在某些任务边界跳过状态保存可能会导致系统在其他地方存储更多状态,从而导致更高的总体开销。因此,无论当前能量状况如何,LATICS 都会在某些任务边界强制执行状态保存,以减少状态保存开销。我们在基于 MSP430 的真实能量收集平台上实施 LATICS,并在不同设置下与最先进的技术进行实验比较。实验结果表明,与现有解决方案相比,LATICS 显着降低了状态保存开销并提高了执行效率。我们披露在某些任务边界跳过状态保存可能会导致系统在其他地方存储更多状态,从而导致更高的整体开销。因此,无论当前能量状况如何,LATICS 都会在某些任务边界强制执行状态保存,以减少状态保存开销。我们在基于 MSP430 的真实能量收集平台上实施 LATICS,并在不同设置下与最先进的技术进行实验比较。实验结果表明,与现有解决方案相比,LATICS 显着降低了状态保存开销并提高了执行效率。我们披露在某些任务边界跳过状态保存可能会导致系统在其他地方存储更多状态,从而导致更高的整体开销。因此,无论当前能量状况如何,LATICS 都会在某些任务边界强制执行状态保存,以减少状态保存开销。我们在基于 MSP430 的真实能量收集平台上实施 LATICS,并在不同设置下与最先进的技术进行实验比较。实验结果表明,与现有解决方案相比,LATICS 显着降低了状态保存开销并提高了执行效率。LATICS 在某些任务边界强制执行状态保存,而不管当前的能量状况如何,以减少状态保存开销。我们在基于 MSP430 的真实能量收集平台上实施 LATICS,并在不同设置下与最先进的技术进行实验比较。实验结果表明,与现有解决方案相比,LATICS 显着降低了状态保存开销并提高了执行效率。LATICS 在某些任务边界强制执行状态保存,而不管当前的能量状况如何,以减少状态保存开销。我们在基于 MSP430 的真实能量收集平台上实施 LATICS,并在不同设置下与最先进的技术进行实验比较。实验结果表明,与现有解决方案相比,LATICS 显着降低了状态保存开销并提高了执行效率。
更新日期:2020-11-01
down
wechat
bug