当前位置: X-MOL 学术J. Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatiotemporal Characterization of Land Subsidence in Guandu (China) Revealed by Multisensor InSAR Observations
Journal of Sensors ( IF 1.9 ) Pub Date : 2020-10-22 , DOI: 10.1155/2020/8855364
Wu Zhu 1 , Xue-qi Zhang 1 , Zhan-ke Liu 2 , Qian Zhu 1
Affiliation  

Excessive groundwater exploitation has brought about severe ground subsidence in Guandu (China), threatening the stability of urban infrastructure. Mapping of the spatiotemporal variations of ground deformation is urgently needed for disaster prevention and mitigation. In this study, multisensor interferometric synthetic aperture radar (InSAR) observations were applied to Guandu to derive the time series deformation from 2007 to 2019. The annual deformation velocity revealed three severe subsiding regions in Guandu. Based on the ascending and descending Sentinel-1 images with overlapping temporal and spatial coverage, two-dimensional vertical and horizontal east–west deformation was calculated and indicated that the deformation in Guandu was dominated by vertical direction. After connecting the multisensor results, long-term ground deformation spanning from January 9, 2007, to September 1, 2019, was produced and showed that the north subsiding region experienced fast followed by slow subsidence, whereas the south subsiding region experienced slow followed by fast subsidence. This difference was due to the changes of groundwater pumping centers and rates. The cumulative maximum subsidence reached 400 mm during the period of 2007–2019. The similar variations in temporal domain between the change of groundwater level and ground deformation suggested that groundwater exploitation accounted for the severe subsidence in Guandu. Our results may provide scientific evidence regarding the sound management of groundwater exploitation to mitigate potential damage to infrastructure and the environment.
更新日期:2020-10-30
down
wechat
bug