当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Giant Quantum Yield Enhancement in CdS/MgF2/Ag Hybrid Nanobelt under Two-Photon Excitation
ACS Photonics ( IF 6.5 ) Pub Date : 2020-10-29 , DOI: 10.1021/acsphotonics.0c00615
Xiangyuan Xing 1 , Kai Wang 1 , Xiaobo Han 2 , Shuhang Qian 1 , Kun Wang 1 , Hua Long 1 , Bing Wang 1 , Peixiang Lu 1, 2, 3
Affiliation  

We demonstrate a giant quantum yield (QY) enhancement (230 times) in a single CdS/MgF2/Ag hybrid nanobelt under the two-photon excitation at 800 nm. The power-dependent two-photon photoluminescence (TPL) and the time-resolved photoluminescence (TRPL) measurement are performed in a single half-covered CdS/MgF2/Ag nanobelt, offering a direct comparison between the CdS nanobelt with and without MgF2/Ag coating. The quantitative theoretical analysis based on the free carrier dynamic model indicates the defect concentration is reduced from (3.7 ± 0.9) × 1019 cm–3 (in bare) to (3.9 ± 0.6) × 1018 cm–3 (in hybrid CdS nanobelt) due to the surface passivation, and the radiative recombination rate is increased from (1.7 ± 0.2) × 10–11 cm3 s–1 (in bare) to (7.1 ± 1.3) × 10–11 cm3 s–1 (in hybrid CdS nanobelt) due to the Purcell effect. Moreover, combined with the enhancement of the local field at the excitation wavelength (6.3×) and the signal collection efficiency (1.42×), a total 1800× enhancement of the TPL signal is achieved in experiment. Our work provides a quantitative characterization on free carrier dynamics of the surface defect passivation in semiconductor nanostructures, which has potentials in photovoltaics and photodetectors with high performance.

中文翻译:

双光子激发下CdS / MgF 2 / Ag杂化纳米带的巨量子产率提高

我们展示了一个单一的CdS / MgF 2 / Ag杂化纳米带在800 nm的双光子激发下的巨大量子产率(QY)增强(230倍)。功率相关的双光子光致发光(TPL)和时间分辨的光致发光(TRPL)测量是在单个半覆盖的CdS / MgF 2 / Ag纳米带中进行的,可以直接比较有和没有MgF 2的CdS纳米带。/ Ag涂层。基于自由载流子动力学模型的定量理论分析表明,缺陷浓度从(3.7±0.9)×10 19 cm –3(裸露)降低到(3.9±0.6)×10 18 cm –3(在混合CdS纳米带中)由于表面钝化,辐射复合率从(1.7±0.2)×10 –11 cm 3 s –1(裸露)增加到(7.1±1.3)×10 –11 cm 3 s –1(在混合CdS纳米带中)由于赛尔效应。此外,结合激发波长(6.3x)处的局部电场增强和信号采集效率(1.42x),在实验中实现了TPL信号总计1800x增强。我们的工作提供了对半导体纳米结构中表面缺陷钝化的自由载流子动力学的定量表征,这在高性能的光伏和光电检测器中具有潜力。
更新日期:2020-11-18
down
wechat
bug