当前位置: X-MOL 学术APL Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stretchable bioelectronics: Mitigating the challenges of the percolation threshold in conductive elastomers
APL Materials ( IF 6.1 ) Pub Date : 2020-10-01 , DOI: 10.1063/5.0005410
Alexey Novikov 1, 2 , Josef Goding 1 , Christopher Chapman 1 , Estelle Cuttaz 1 , Rylie A. Green 1
Affiliation  

Conductive polymer (CP)–elastomer composites have been proposed as an alternative to the metals conventionally used for bioelectronic devices. Being softer and more stretchable than metals such as platinum and gold, they can mitigate the adverse effects associated with mechanical mismatch and fatigue failure. Such composites are conventionally made by embedding CP particles inside an elastomeric matrix. However, to achieve such a structure, a high CP loading that reaches a percolation threshold is required. High percolation thresholds lead to the degradation of mechanical properties. This study presents an alternate approach designed to reduce the CP content while maintaining conductivity through the matrix. A poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) composite was produced by filling a CP aerogel with polydimethylsiloxane (PDMS). This approach successfully formed a stretchable, conductive material, with only 1.8 wt. % CP. While elastic behavior was observed at low strain, the composite displayed plastic deformation at high strain (>20%). Future improvements will focus on the modification of the PEDOT:PSS–PDMS interface, to improve interaction of the polymer components and, hence, mechanical stability within the construct.

中文翻译:

可拉伸生物电子学:减轻导电弹性体渗透阈值的挑战

导电聚合物(CP)-弹性体复合材料已被提议作为传统用于生物电子设备的金属的替代品。它们比铂和金等金属更柔软、更易拉伸,可以减轻与机械失配和疲劳失效相关的不利影响。这种复合材料通常是通过将 CP 颗粒嵌入弹性体基质中制成的。然而,为了实现这样的结构,需要达到渗透阈值的高 CP 负载。高渗透阈值会导致机械性能下降。本研究提出了一种替代方法,旨在降低 CP 含量,同时保持通过基质的电导率。聚(3,4-亚乙基二氧噻吩)-聚苯乙烯磺酸盐(PEDOT:PSS) 复合材料是通过用聚二甲基硅氧烷 (PDMS) 填充 CP 气凝胶来生产的。这种方法成功地形成了一种可拉伸的导电材料,重量仅为 1.8 重量%。%CP。虽然在低应变下观察到弹性行为,但复合材料在高应变 (>20%) 下显示出塑性变形。未来的改进将集中在 PEDOT:PSS-PDMS 界面的改进上,以改善聚合物组分的相互作用,从而提高结构内的机械稳定性。
更新日期:2020-10-01
down
wechat
bug