当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of electrochemical high-speed atomic force microscopy for visualizing dynamic processes of battery electrode materials
Review of Scientific Instruments ( IF 1.3 ) Pub Date : 2020-10-01 , DOI: 10.1063/5.0024425
Zhengliang Liu 1 , Zhuanfang Bi 1 , Yang Shang 2 , Yaowen Liang 1 , Peifa Yang 1 , Xiao Li 1 , Chuandi Zhang 1 , Guangyi Shang 1
Affiliation  

Development of lithium ion batteries with ultrafast charging rate as well as high energy/power densities and long cycle-life is one of the imperative works in the field of batteries. To achieve this goal, it requires not only to develop new electrode materials but also to develop nano-characterization techniques that are capable of investigating the dynamic evolution of the surface/interface morphology and property of fast charging electrode materials during battery operation. Although electrochemical atomic force microscopy (EC-AFM) holds high spatial resolution, its imaging speed is too slow to visualize dynamics occurring on the timescale of minutes. In this article, we present an electrochemical high-speed AFM (EC-HS-AFM), developed by addressing key technologies involving optical detection of small cantilever deflection, dual scanner capable of high-speed and wide-range imaging, and electrochemical cell with three electrodes. EC-HS-AFM imaging from 1 fpm to ∼1 fps with a maximum scan range of 40 × 40 µm2 has been stably and reliably realized. Dynamic morphological changes in the LiMn2O4 nanoparticles during cyclic voltammetry measurements in the 0.5 mol/l Li2SO4 solution were successfully visualized. This technique will provide the possibility of tracking dynamic processes of fast charging battery materials and other surface/interface processes such as the formation of the solid electrolyte interphase layer.

中文翻译:

开发用于电池电极材料动态过程可视化的电化学高速原子力显微镜

开发具有超快充电速率、高能量/功率密度和长循环寿命的锂离子电池是电池领域必不可少的工作之一。为了实现这一目标,不仅需要开发新的电极材料,还需要开发能够研究电池运行过程中快速充电电极材料的表面/界面形态和性能的动态演变的纳米表征技术。尽管电化学原子力显微镜 (EC-AFM) 具有很高的空间分辨率,但其成像速度太慢,无法可视化在几分钟的时间尺度上发生的动力学。在本文中,我们介绍了一种电化学高速 AFM (EC-HS-AFM),它是通过解决涉及小悬臂偏转光学检测的关键技术而开发的,能够高速和宽范围成像的双扫描仪,以及具有三个电极的电化学电池。EC-HS-AFM 成像从 1 fpm 到 ∼1 fps,最大扫描范围为 40 × 40 µm2 已经稳定可靠地实现。在 0.5 mol/l Li2SO4 溶液中循环伏安测量期间 LiMn2O4 纳米颗粒的动态形态变化被成功地可视化。该技术将为跟踪快速充电电池材料的动态过程和其他表面/界面过程(例如固体电解质界面层的形成)提供可能性。在 0.5 mol/l Li2SO4 溶液中循环伏安测量期间 LiMn2O4 纳米颗粒的动态形态变化被成功地可视化。该技术将为跟踪快速充电电池材料的动态过程和其他表面/界面过程(例如固体电解质界面层的形成)提供可能性。在 0.5 mol/l Li2SO4 溶液中循环伏安测量期间 LiMn2O4 纳米颗粒的动态形态变化被成功地可视化。该技术将为跟踪快速充电电池材料的动态过程和其他表面/界面过程(例如固体电解质界面层的形成)提供可能性。
更新日期:2020-10-01
down
wechat
bug