当前位置: X-MOL 学术APL Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tubular optical microcavities based on rolled-up photonic crystals
APL Photonics ( IF 5.4 ) Pub Date : 2020-10-12 , DOI: 10.1063/5.0022862
Rémi Briche 1 , Aziz Benamrouche 1 , Pierre Cremillieu 1 , Philippe Regreny 1 , Jean-Louis Leclercq 1 , Xavier Letartre 1 , Alexandre Danescu 1 , Ségolène Callard 1
Affiliation  

The self-rolling of micro-structured membranes via the stress-engineering method opens new ways to create 3D photonic micro-objects with original designs and optical properties. This article validates this approach by producing 3D hollow micro-resonators based on rolled-up 2D photonic crystal membrane mirrors, capable of trapping light in 3D and in air. We fabricated the 3D tubular microresonators with 10 μm–20 μm diameters by rolling photonic crystal membranes using stress-engineering technique on the prestressed InGaP/InP bilayer. We also added a design feature to lift the microtubes vertically and facilitate optical measurements, but also to attach the structures to the substrate. The dispersion of the planar 2D photonic crystal membrane was optimized to exhibit high reflectivity (>95%) at normal incidence over a large spectral band (100 nm) in the near-infrared domain (1.5 μm–1.6 μm). The cylindrical cavity model and numerical simulations predicted the presence of quasi-pure radial cavity modes with a strong concentration of light over nearly 3% of the photonic microtubes’ cross section. We demonstrated experimentally the presence of those modes through scanning near-field optical microscopy measurements. Using a bowtie nanoantenna, we selectively detected and mapped transverse electric modes in the hollow core of photonic microtubes. Spatially resolved cartographies allowed for the identification of the modes in good agreement with theoretical predictions. This work brings theoretical and experimental proof of concept of light cages based on rolled-up photonic crystal membranes. It also opens the path to the realization of original photonic microstructures as combinations of a specific photonic crystal design and a targeted 3D form.

中文翻译:

基于卷起的光子晶体的管状光学微腔

通过应力工程方法对微结构膜进行自滚动,为创建具有原始设计和光学特性的3D光子微物体开辟了新途径。本文通过生产基于卷起的2D光子晶体膜反射镜的3D中空微谐振器来验证这种方法,该3D中空微谐振器能够将光捕获到3D和空气中。我们制造成具有10所述3D管状微谐振器的μ M-20 μ通过在预应力InGaP / InP双层膜上使用应力工程技术滚动光子晶体膜,获得直径为d的直径。我们还添加了一种设计功能,可以垂直提升微管并方便光学测量,还可以将结构附着到基板上。平面二维光子晶体膜的分散体进行了优化在垂直入射在在近红外域大的光谱带(100纳米)显示出高的反射率(> 95%)(1.5 μ M-1.6 μm)。圆柱腔模型和数值模拟预测了准纯径向腔模式的存在,该模式在光子微管横截面的近3%处具有很强的光集中度。我们通过扫描近场光学显微镜测量实验证明了这些模式的存在。使用领结纳米天线,我们选择性地检测和映射了光子微管空心中的横向电模式。空间分辨制图可以确定模式,与理论预测相吻合。这项工作为基于卷起的光子晶体膜的光笼的概念提供了理论和实验证明。
更新日期:2020-10-30
down
wechat
bug