当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomechanics in thrombus formation from direct cellular simulations
Physical Review E ( IF 2.2 ) Pub Date : 2020-10-21 , DOI: 10.1103/physreve.102.042410
Ting Ye 1 , Xuejiao Zhang 1 , Guansheng Li 1 , Sitong Wang 1
Affiliation  

Numerically reproducing the process of thrombus formation is highly desired for understanding its mechanism but still remains challenging due to the polydisperse feature of blood components and their multiple biochemical or biomechanical behaviors involved. We numerically implemented a simplified version of the process from the perspective of biomechanics, using a mesoscale particle-based method, smoothed dissipative particle dynamics-immersed boundary method. This version covers the adhesion and aggregation of platelets (PLTs), the deformation and aggregation of red blood cells (RBCs), and the interaction between PLTs and RBCs, as well as the blockage of microvessels. Four critical factors that can affect thrombus formation were investigated: the velocity of blood flow, the adhesive ability of PLTs, the interaction strength between PLTs and RBCs, and the deformability of RBCs. Increasing the velocity of blood flow was found to be the most effective way to reduce the microvessel blockage, and reducing the adhesive ability of PLTs is also a direct and efficient way. However, decreasing the interaction strength between PLTs and RBCs sometimes does not alleviate thrombus formation, and similarly, increasing the deformability of RBCs does not have a significant improvement for the severely blocked microvessel. These results imply that maintaining high-rate blood flow plays a crucial role in the prevention and treatment of thrombosis, which is even more effective than antiplatelet or anticoagulant drugs. The drugs or treatments concentrating on reducing the PLT-RBC interaction or softening the RBCs may not have a significant effect on the thrombosis.

中文翻译:

直接细胞模拟中血栓形成的生物力学

数字再现血栓形成的过程对于理解其机制是非常需要的,但由于血液成分的多分散特征及其涉及的多种生化或生物力学行为,仍然具有挑战性。我们从生物力学的角度数值实现了该过程的简化版本,使用基于中尺度粒子的方法,平滑耗散粒子动力学浸入边界方法。该版本涵盖了血小板(PLTs)的粘附和聚集、红细胞(RBCs)的变形和聚集、PLTs与RBCs的相互作用以及微血管的堵塞。研究了影响血栓形成的四个关键因素:血流速度、PLTs的粘附能力、PLTs与红细胞之间的相互作用强度、和红细胞的变形能力。发现增加血流速度是减少微血管阻塞最有效的方法,降低PLTs的粘附能力也是一种直接有效的方法。然而,降低 PLTs 和 RBCs 之间的相互作用强度有时并不能缓解血栓形成,同样,增加 RBCs 的变形能力对严重阻塞的微血管也没有显着改善。这些结果意味着维持高速血流在血栓形成的预防和治疗中起着至关重要的作用,甚至比抗血小板或抗凝药物更有效。专注于减少 PLT-RBC 相互作用或软化 RBC 的药物或治疗可能对血栓形成没有显着影响。发现增加血流速度是减少微血管阻塞最有效的方法,降低PLTs的粘附能力也是一种直接有效的方法。然而,降低 PLTs 和 RBCs 之间的相互作用强度有时并不能缓解血栓形成,同样,增加 RBCs 的变形能力对严重阻塞的微血管也没有显着改善。这些结果意味着维持高速血流在血栓形成的预防和治疗中起着至关重要的作用,甚至比抗血小板或抗凝药物更有效。专注于减少 PLT-RBC 相互作用或软化 RBC 的药物或治疗可能对血栓形成没有显着影响。发现增加血流速度是减少微血管阻塞最有效的方法,降低PLTs的粘附能力也是一种直接有效的方法。然而,降低 PLTs 和 RBCs 之间的相互作用强度有时并不能缓解血栓形成,同样,增加 RBCs 的变形能力对严重阻塞的微血管也没有显着改善。这些结果意味着维持高速血流在血栓形成的预防和治疗中起着至关重要的作用,甚至比抗血小板或抗凝药物更有效。专注于减少 PLT-RBC 相互作用或软化 RBC 的药物或治疗可能对血栓形成没有显着影响。
更新日期:2020-10-30
down
wechat
bug