当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spectroscopic Study the Air-Processed Degradation Mechanism of Inverted Organic Solar Cells
Frontiers in Physics ( IF 1.9 ) Pub Date : 2020-09-22 , DOI: 10.3389/fphy.2020.578317
Minshuai Wang , Xiaomei Cai , Yinghong Huang , Kai Zheng , Fumin Li

Organic solar cells are promising for the next-generation photovoltaic technology owing to its low cost and flexibility. The possibility of efficient large-area roll-to-roll production has attracted worldwide industrial interest. However, the instability and glove-box process still impede the industrial production of organic solar cells. In this paper, we investigated air-processed degradation mechanisms to provide instructions for practical applications. The air-processed degradation mechanism of the organic solar cells is ascribed that the PEDOT:PSS interfacial layer is oxidized by oxygen and the active layer p-DTS(FBTTh2)2 tends to be affected by water. The air-processed degradation of the PEDOT:PSS interfacial layer results from the oxidation and desulfurization of PEDOT:PSS, which caused huge efficiency loss. The active layer of p-DTS(FBTTh2)2:PC71BM tends to be affected by ambient environment, which led to fatal results. The research on these unresolved degradation mechanisms enables us to choose the suitable materials and get stable performance in the air-processed situation.



中文翻译:

光谱研究倒置有机太阳能电池的空气降解机理

由于其低成本和灵活性,有机太阳能电池有望用于下一代光伏技术。有效的大面积卷对卷生产的可能性吸引了全世界的工业兴趣。然而,不稳定性和手套箱工艺仍然阻碍有机太阳能电池的工业生产。在本文中,我们研究了空气降解的机理,为实际应用提供了指导。空气处理的有机太阳能电池降解机理归因于PEDOT:PSS界面层被氧气和活性层p-DTS(FBTTh 22氧化。容易受到水的影响。PEDOT:PSS界面层的空气降解是PEDOT:PSS的氧化和脱硫所致,从而导致巨大的效率损失。p-DTS(FBTTh 22:PC 71 BM的活性层易于受到周围环境的影响,从而导致致命的结果。对这些未解决的降解机理的研究使我们能够选择合适的材料,并在空气处理的情况下获得稳定的性能。

更新日期:2020-10-30
down
wechat
bug