当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material
Nanophotonics ( IF 7.5 ) Pub Date : 2020-10-29 , DOI: 10.1515/nanoph-2020-0498
Xinxiang Niu 1 , Xiaoyong Hu 1, 2, 3 , Quan Sun 3, 4 , Cuicui Lu 5 , Yuanmu Yang 6 , Hong Yang 1, 2, 3 , Qihuang Gong 1, 2, 3
Affiliation  

Abstract Nonlinear optical materials are cornerstones of modern optics including ultrafast lasers, optical computing, and harmonic generation. The nonlinear coefficients of optical materials suffer from limitations in strength and bandwidth. Also, the nonlinear performance is typically monotonous without polarization selectivity, and to date, no natural material has been found to possess nonlinear coefficients with positive or negative signs simultaneously at a specific wavelength, all of which impede practical applications in the specific scenario. Here, we realize broadband large optical nonlinearity accompanied with ultrafast dynamics in a coupled system composed of gold dolmens and an epsilon-near-zero material for dual orthogonal polarizations simultaneously. The system also shows the polarization-selected nonlinearity transition properties, where the sign of the optical nonlinear refractive indexes can be converted via polarization switching. This guarantees active transitions from self-focusing to self-defocusing by polarization rotation without tuning wavelength in practical utilizations. The measured nonlinear refractive index and susceptibility demonstrate more than three orders of magnitude enhancement over a 400-nm-bandwidth compared with the constituents, while maintaining the sub-1 ps time response. The realized enhanced, ultrafast response, and the polarization tunability ensure the designed system a promising platform for the development of integrated ultrafast laser sources, all-optical circuits and quantum chips.

中文翻译:

耦合到 epsilon 近零材料的金支石墓中的极化选择非线性跃迁

摘要 非线性光学材料是现代光学的基石,包括超快激光、光学计算和谐波产生。光学材料的非线性系数受到强度和带宽的限制。此外,非线性性能通常是单调的,没有偏振选择性,迄今为止,还没有发现天然材料在特定波长下同时具有正负号的非线性系数,所有这些都阻碍了特定场景中的实际应用。在这里,我们在由金支石墓和 epsilon-near-zero 材料组成的耦合系统中同时实现了宽带大光学非线性和超快动力学,用于双正交偏振。该系统还显示了极化选择的非线性过渡特性,其中光学非线性折射率的符号可以通过偏振切换进行转换。这保证了通过偏振旋转从自聚焦到自散焦的主动转变,而无需在实际应用中调整波长。与成分相比,测得的非线性折射率和磁化率在 400 nm 带宽上显示出超过三个数量级的增强,同时保持低于 1 ps 的时间响应。实现的增强、超快响应和偏振可调性确保设计的系统成为开发集成超快激光源、全光电路和量子芯片的有前途的平台。这保证了通过偏振旋转从自聚焦到自散焦的主动转变,而无需在实际应用中调整波长。与成分相比,测得的非线性折射率和磁化率在 400 nm 带宽上显示出超过三个数量级的增强,同时保持低于 1 ps 的时间响应。实现的增强、超快响应和偏振可调性确保设计的系统成为开发集成超快激光源、全光电路和量子芯片的有前途的平台。这保证了通过偏振旋转从自聚焦到自散焦的主动转变,而无需在实际应用中调整波长。与成分相比,测得的非线性折射率和磁化率在 400 nm 带宽上显示出超过三个数量级的增强,同时保持低于 1 ps 的时间响应。实现的增强、超快响应和偏振可调性确保设计的系统成为开发集成超快激光源、全光电路和量子芯片的有前途的平台。同时保持低于 1 ps 的时间响应。实现的增强、超快响应和偏振可调性确保设计的系统成为开发集成超快激光源、全光电路和量子芯片的有前途的平台。同时保持低于 1 ps 的时间响应。实现的增强、超快响应和偏振可调性确保设计的系统成为开发集成超快激光源、全光电路和量子芯片的有前途的平台。
更新日期:2020-10-29
down
wechat
bug