当前位置: X-MOL 学术Mem. Inst. Oswaldo Cruz › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The secreted acid trehalase encoded by the CgATH1 gene is involved in Candida glabrata virulence
Memórias do Instituto Oswaldo Cruz ( IF 2.5 ) Pub Date : 2020-10-30 , DOI: 10.1590/0074-02760200401
Rafael G Lopes 1 , Julián E Muñoz 2 , Ludmila M Barros 1 , Sergio L Alves-Jr 3 , Carlos P Taborda 4 , Boris U Stambuk 1
Affiliation  

BACKGROUND Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene. OBJECTIVE This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata. METHODS Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection. FINDINGS The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice. MAIN CONCLUSIONS The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.

中文翻译:

通过将编码的分泌的酸性海藻糖酶CgATH1基因参与光滑念珠菌毒力

背景技术光滑念珠菌酵母菌是全世界念珠菌病的第二个原因。与其他酵母的不同之处在于,它通过向培养基中分泌由CgATH1基因编码的高活性酸性海藻糖酶,仅吸收葡萄糖和海藻糖(此病原体的快速鉴定测试中所使用的特征)。目的本研究旨在表征酸性海藻糖酶在光滑念珠菌的生理病理学中的功能。方法进行基因删除以获得突变型ath1Δ菌株,并验证ath1Δ菌株在海藻糖酶中生长的能力或在ath1Δ酵母细胞中存在海藻糖酶活性。我们还测试了鼠感染模型中ath1Δ菌株的毒力。研究结果ath1Δ突变株在葡萄糖存在下正常生长,但在海藻糖中丧失生长能力。由于野生型细胞中存在较高的酸性海藻糖酶活性,因此仅在ath1Δ菌株中才能检测到胞质中性海藻糖酶活性。我们还观察到在正常或免疫功能低下的小鼠感染的鼠模型中,ath1Δ毒株的毒力明显降低。主要结论酸性海藻糖酶参与了光滑念珠菌对外部海藻糖的水解作用,该酶在感染过程中也起着重要的毒力作用。
更新日期:2020-10-30
down
wechat
bug