当前位置: X-MOL 学术Mol. Biol. Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms
Molecular Biology of the Cell ( IF 3.1 ) Pub Date : 2020-10-28 , DOI: 10.1091/mbc.e20-09-0591
Jason C Casler 1 , Allison L Zajac 1 , Fernando M Valbuena 1 , Daniela Sparvoli 1 , Okunola Jeyifous 2, 3 , Aaron P Turkewitz 1 , Sally Horne-Badovinac 1 , William N Green 2, 3 , Benjamin S Glick 1
Affiliation  

Membrane traffic can be studied by imaging a cargo protein as it transits the secretory pathway. The best tools for this purpose initially block export of the secretory cargo from the endoplasmic reticulum (ER), and then release the block to generate a cargo wave. However, previously developed regulatable secretory cargoes are often tricky to use or specific for a single model organism. To overcome these hurdles for budding yeast, we recently optimized an artificial fluorescent secretory protein that exits the ER with the aid of the Erv29 cargo receptor, which is homologous to mammalian Surf4. The fluorescent secretory protein forms aggregates in the ER lumen and can be rapidly disaggregated by addition of a ligand to generate a nearly synchronized cargo wave. Here we term this regulatable secretory protein ESCargo (Erv29/Surf4-dependent Secretory Cargo) and demonstrate its utility not only in yeast cells, but also in cultured mammalian cells, Drosophila cells, and the ciliate Tetrahymena thermophila. Kinetic studies indicate that rapid export from the ER requires recognition by Erv29/Surf4. By choosing an appropriate ER signal sequence and expression vector, this simple technology can likely be used with many model organisms.

Movie S1: ESCargo in Saccharomyces cerevisiae. Shown are representative cells of a wild-type (WT) strain containing Erv29 and of an erv29Δ strain. Confocal Z stacks were captured every 15 s for 24.5 min. SLF was added at time zero to a final concentration of 100 μM. The movie frames are average projected fluorescence signals merged with brightfield images of the cells. Images from this movie are shown in Figure 1C. Scale bar, 2 μm.Download Original Video (.2 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-09-0591/20201026/media/mc-e20-09-0591-s03.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9709f37f41dd42f7833063064e692b63380407d43d1a4e53d0f75880c23b8595cf435d259dd057e064a06ea7b625059de85dc07802414ba4459df56d3af06ed85ca4811ce4c2f679989bc809b1a81d863Movie S2: ESCargo* and ESCargo(FTV) in cultured mammalian cells, and ESCargo(FTV) in rat cortical neurons. In the first part of the movie, Flp-In 293 T-REx cells stably expressing the Golgi marker GalNAc-T2-GFP were grown on confocal dishes and transfected with expression constructs for ESCargo* (left) or ESCargo(FTV) (right) 24-48 h before imaging. Following cycloheximide treatment, SLF was added at time zero to a final concentration of 50 μM. Confocal Z stacks were taken every 30 s for 62 min. Average projections are shown for representative cells. The top panel is a merge of the two fluorescence channels. Images from this movie are shown in Figure 2B. Scale bar, 5 μm. In the second part of the movie, rat cortical neurons were transfected to express the Golgi marker ManII-GFP together with ESCargo(FTV) 48 h before imaging. The left and right panels show separate movies of two representative cells. Confocal Z stacks were taken 2 min prior to SLF addition, and then every 2 min after SLF addition for 100 min (left panel) or 60 min (right panel). Images from this movie are shown in Figure 3, A and B. Scale bar, 10 μm.Download Original Video (8.3 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-09-0591/20201026/media/mc-e20-09-0591-s04.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3cb1ed2ca8389c97c125f21841bf0f61ac810647c9fb9053bb24a3eadd32d7f577246d2ac16d13e2ef8a027685c90790ad097030c06ca0171fa756ad3383b604d43fd88240ac20c35718bce4bb4b6c31040f7c8bc5d7b7e9d328c88bd9d104451d61bbdcf0fa22c7b3Movie S3: ESCargo* and ESCargo in Drosophila S2 cells. Cells were transfected with Ubi-GAL4, pUASt-ManII-eGFP, and either pUASt-ssBiP-ESCargo* (left) or pUASt-ssBiP-ESCargo (right). After 3-4 days, the cells were adhered to ConA-coated confocal dishes for 30 min before confocal imaging. SLF was added at time zero to a final concentration of 50 μM. Confocal Z stacks were taken every 30 s for 54.5 min. Average projections are shown for representative cells. The top panel is a merge of the two fluorescence channels. Images from this movie are shown in Figure 4A. Scale bar, 5 μsm.Download Original Video (7.3 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-09-0591/20201026/media/mc-e20-09-0591-s05.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3cb1ed2ca8389c97c125f21841bf0f61ac810647c9fb9053bb24a3eadd32d7f577246d2ac16d13e2ef8a037685c90790ad092de61ac32c7ee01735d46b816e6c85d1c56d9f968a401e1697cbb8726f6b7c8560d7baa31eaf594ffa5af257310aa163d880804a95e307


中文翻译:


ESCargo:适用于多种模式生物的可调节荧光分泌货物



可以通过对货物蛋白通过分泌途径时进行成像来研究膜运输。用于此目的的最佳工具首先阻止内质网 (ER) 中分泌货物的输出,然后释放该阻碍以产生货物波。然而,先前开发的可调节分泌货物通常难以使​​用或特定于单一模型生物。为了克服芽殖酵母的这些障碍,我们最近优化了一种人工荧光分泌蛋白,该蛋白借助与哺乳动物 Surf4 同源的 Erv29 货物受体离开内质网。荧光分泌蛋白在内质网腔中形成聚集体,并且可以通过添加配体快速解聚以产生几乎同步的货物波。在这里,我们将这种可调节分泌蛋白命名为 ESCargo( E rv29/Surf4 依赖性分泌货物),并证明其不仅在酵母细胞中有用,而且在培养的哺乳动物细胞、果蝇细胞和纤毛虫嗜热四膜虫中也有用。动力学研究表明,从 ER 快速输出需要被 Erv29/Surf4 识别。通过选择合适的 ER 信号序列和表达载体,这种简单的技术可能适用于许多模型生物。


电影 S1:酿酒酵母中的 ESCargo。显示的是含有 Erv29 的野生型 (WT) 菌株和 erv29Δ 菌株的代表性细胞。每 15 秒捕获一次共焦 Z 堆栈,持续 24.5 分钟。在零时间添加 SLF 至终浓度 100 μM。电影帧是与细胞的明场图像合并的平均投影荧光信号。该电影中的图像如图 1C 所示。比例尺,2 μm。下载原始视频 (.2 MB)电影 S2:培养的哺乳动物细胞中的 ESCargo* 和 ESCargo(FTV),以及大鼠皮质神经元中的 ESCargo(FTV)。在影片的第一部分中,稳定表达高尔基体标记 GalNAc-T2-GFP 的 Flp-In 293 T-REx 细胞在共聚焦培养皿上生长,并用 ESCargo*(左)或 ESCargo(FTV)(右)的表达构建体转染成像前 24-48 小时。放线菌酮处理后,在零时间添加 SLF 至终浓度 50 μM。每 30 秒拍摄一次共焦 Z 堆栈,持续 62 分钟。显示了代表性细胞的平均预测。顶部面板是两个荧光通道的合并。该电影中的图像如图 2B 所示。比例尺,5 μm。在电影的第二部分中,在成像前48小时,将大鼠皮质神经元与ESCargo(FTV)一起转染以表达高尔基体标记物ManII-GFP。左侧和右侧面板显示两个代表性细胞的单独电影。在添加 SLF 之前 2 分钟拍摄共焦 Z 堆栈,然后在添加 SLF 后每 2 分钟拍摄一次,持续 100 分钟(左图)或 60 分钟(右图)。该影片的图像如图 3 A 和 B 所示。比例尺,10 μm。下载原始视频 (8.3 MB)影片 S3: ESCargo* 和果蝇 S2 细胞中的 ESCargo。 使用 Ubi-GAL4、pUASt-ManII-eGFP 和 pUASt-ssBiP-ESCargo*(左)或 pUASt-ssBiP-ESCargo(右)转染细胞。 3-4天后,将细胞粘附到ConA包被的共聚焦培养皿上30分钟,然后进行共聚焦成像。在零时间添加 SLF 至终浓度 50 μM。每 30 秒拍摄一次共焦 Z 堆栈,持续 54.5 分钟。显示了代表性细胞的平均预测。顶部面板是两个荧光通道的合并。该电影中的图像如图 4A 所示。比例尺,5 μsm。下载原始视频 (7.3MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-09-0591/20201026/media/mc-e20-09-0591-s05.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3cb1ed2ca8389c97c125f21841bf0f61ac810647c9fb9053bb24a3eadd32d7f577246d2ac16d13e2ef8a037685c90790ad092de61ac32c7ee01735d46b816e6c85d1c56d9f968a401e1697cbb8726f6b7c8560d7baa31eaf594ffa5af257310aa163d880804a95e307
更新日期:2020-10-30
down
wechat
bug