当前位置: X-MOL 学术Geophys. Prospect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biot effective stress parameter in poroelastic anisotropic media: Static and dynamic case
Geophysical Prospecting ( IF 1.8 ) Pub Date : 2020-10-29 , DOI: 10.1111/1365-2478.13046
Sharif M. Morshed 1 , Evgeny M. Chesnokov 1 , Alexandra A. Vikhoreva 2
Affiliation  

Stress, rock microstructure and frequency are the three key factors that influence the velocities of elastic waves and, hence, are sensitive to the Biot effective stress parameter (α) in porous rocks. The effective stress in an isotropic poroelastic medium relates to applied pressure and pore pressure, with the Biot parameter (α) as a scaling factor of the pore pressure. This paper provides an independent derivation of the tensor characteristics of α through elastic moduli, a microscopic effective medium derivation, and frequency‐dependent behaviour of α for an anisotropic medium. We provide an explicit expression, especially for isotropic rock under uniaxial stress, considering the nonlinear part of elastic constants. In the effective medium derivation, we assumed that the rock contained both isolated pores and connected pores saturated with liquid. To support our theoretical formulation, we calculated the Biot tensor of sandstone and shale by inverting the ultrasonic velocities of transversely isotropic rock under uniaxial stress where mineralogical composition and porosity are known. Even though porosity and rock microstructure play significant roles in α as stress varies, we also see as much as a 21% difference between horizontal and vertical components of α for rocks with transversely isotropic symmetry. We then estimated the frequency‐dependent Biot tensor for transversely isotropic models using numerical calculations. We noticed significant differences between vertical (α33) and horizontal (α11) components of α, especially at the surface seismic frequency band. However, uniaxial stress and horizontally aligned microstructure influence the elastic moduli and Biot tensor contrarily. In general, anisotropy due to uniaxial stress shows lower α33 and higher α11. The proposed method shows an excellent prediction of α33 and α11 for given data of uniaxial stress and vice versa.

中文翻译:

多孔弹性各向异性介质中的比奥有效应力参数:静态和动态情况

应力,岩石微观结构和频率是影响弹性波速度的三个关键因素,因此它们对多孔岩石中的比奥有效应力参数(α)敏感。各向同性多孔弹性介质中的有效应力与施加的压力和孔隙压力有关,其中Biot参数(α)是孔隙压力的比例因子。本文通过弹性模量提供了α的张量特性的独立推导,微观有效介质推导以及各向异性介质的α随频率变化的行为。考虑弹性常数的非线性部分,我们提供了一个明确的表达式,特别是对于单轴应力下的各向同性岩石。在有效的介质推导中,我们假设岩石既包含孤立的孔隙,又包含被液体饱和的连通孔隙。为了支持我们的理论公式,我们通过在已知矿物学组成和孔隙度的单轴应力下,通过反转横向各向同性岩石的超声速度来计算砂岩和页岩的比奥张量。尽管孔隙率和岩石微观结构在应力变化中在α中起着重要作用,但对于横观各向同性对称的岩石,我们还发现α水平分量和垂直分量之间的差异高达21%。然后,我们使用数值计算来估计横观各向同性模型的频率相关的Biot张量。我们注意到垂直(我们通过在已知矿物学组成和孔隙度的单轴应力下,通过反转横观各向同性岩石的超声速度来计算砂岩和页岩的比奥张量。尽管孔隙率和岩石微观结构在应力变化中在α中起着重要作用,但对于横观各向同性对称的岩石,我们还发现α的水平分量和垂直分量之间的差异高达21%。然后,我们使用数值计算来估计横观各向同性模型的频率相关的Biot张量。我们注意到垂直(α 我们通过在已知矿物学组成和孔隙度的单轴应力下,通过反转横观各向同性岩石的超声速度来计算砂岩和页岩的比奥张量。尽管孔隙率和岩石微观结构在应力变化中在α中起着重要作用,但对于横观各向同性对称的岩石,我们还发现α水平分量和垂直分量之间的差异高达21%。然后,我们使用数值计算来估计横观各向同性模型的频率相关的Biot张量。我们注意到垂直(α 对于横观各向同性对称的岩石,我们还可以看到α的水平分量和垂直分量之间相差多达21%。然后,我们使用数值计算来估计横观各向同性模型的频率相关的Biot张量。我们注意到垂直(α 对于横观各向同性对称的岩石,我们还可以看到α的水平分量和垂直分量之间相差多达21%。然后,我们使用数值计算来估计横观各向同性模型的频率相关的Biot张量。我们注意到垂直(33)和水平(α 11 α的)组分,特别是在表面地震频带。但是,单轴应力和水平排列的微观结构会相反地影响弹性模量和Biot张量。通常,各向异性由于单轴应力显示出较低的α 33和α更高11。所提出的方法示出了α的优良预测33和α 11为单轴应力和反之亦然的给定数据。
更新日期:2020-10-29
down
wechat
bug