当前位置: X-MOL 学术Eng. Sci. Technol. Int. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304 stainless steel
Engineering Science and Technology, an International Journal ( IF 5.1 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.jestch.2020.10.001
Anjani Kumar , Anil Kumar Das

Abstract In this work, Silicon carbide (SiC) reinforced Cobalt (Co) coatings were produced using tungsten inert gas (TIG) coating technique on AISI 304 stainless steel substrates. The effects of various heat inputs on microstructure, wear resistance, coefficient of friction (COF), and microhardness, of composite coatings were systematically investigated. Results of X-ray diffraction (XRD) showed that the composite coatings were primarily composed of FeSi, CoSi, CoSi2, Fe3C, SiC and Co phases. Analysis of the elements by using energy dispersive X-ray spectroscopy (EDX) confirmed the existence of elements Co, C, Si, Ni, and Fe in the coating. The microstructural analysis was performed using scanning electron microscopy (SEM), micrographs showed that grains changed from an irregular polygonal grain to an elongated dendritic grain depending on heat inputs. Composite coating produced at 528 J/mm heat input shows uniformly distributed fine dendritic grains and produces defect-free coatings. The average maximum microhardness of composite coating was increased from ~374 HV0.1 to ~650 HV0.1, whereas the average microhardness of the 304-steel substrate was ~190 HV0.1. Comparative wear resistance of Co-SiC composite coating was appreciably improved, ranging from ~1.7 to ~6.4 times better than that of the AISI 304 stainless steel substrate. At 528 J/ mm heat input, composite coating exhibits the best tribological properties with reduced COF (~0.40) compared to the substrate.

中文翻译:

304不锈钢上Co-SiC钨惰性气体包覆涂层组织和力学性能的演变

摘要 在这项工作中,使用钨惰性气体 (TIG) 涂层技术在 AISI 304 不锈钢基材上制备了碳化硅 (SiC) 增强的钴 (Co) 涂层。系统研究了各种热输入对复合涂层微观结构、耐磨性、摩擦系数 (COF) 和显微硬度的影响。X射线衍射(XRD)结果表明复合涂层主要由FeSi、CoSi、CoSi2、Fe3C、SiC和Co相组成。使用能量色散 X 射线光谱 (EDX) 分析元素证实了涂层中存在 Co、C、Si、Ni 和 Fe 元素。使用扫描电子显微镜 (SEM) 进行显微结构分析,显微照片显示,根据热量输入,晶粒从不规则的多边形晶粒变为细长的树枝状晶粒。在 528 J/mm 热输入下生产的复合涂层显示出均匀分布的细枝晶,并产生无缺陷的涂层。复合涂层的平均最大显微硬度从~374 HV0.1 增加到~650 HV0.1,而304-钢基体的平均显微硬度为~190 HV0.1。Co-SiC 复合涂层的比较耐磨性明显提高,比 AISI 304 不锈钢基材的耐磨性好约 1.7 到约 6.4 倍。在 528 J/mm 的热输入下,与基材相比,复合涂层表现出最佳的摩擦学性能,同时降低了 COF (~0.40)。在 528 J/mm 热输入下生产的复合涂层显示出均匀分布的细枝晶,并产生无缺陷的涂层。复合涂层的平均最大显微硬度从~374 HV0.1 增加到~650 HV0.1,而304-钢基体的平均显微硬度为~190 HV0.1。Co-SiC 复合涂层的比较耐磨性明显提高,比 AISI 304 不锈钢基材的耐磨性好约 1.7 到约 6.4 倍。在 528 J/mm 的热输入下,与基材相比,复合涂层表现出最佳的摩擦学性能,同时降低了 COF (~0.40)。在 528 J/mm 热输入下生产的复合涂层显示出均匀分布的细枝晶,并产生无缺陷的涂层。复合涂层的平均最大显微硬度从~374 HV0.1 增加到~650 HV0.1,而304-钢基体的平均显微硬度为~190 HV0.1。Co-SiC 复合涂层的比较耐磨性明显提高,比 AISI 304 不锈钢基材的耐磨性好约 1.7 到约 6.4 倍。在 528 J/mm 的热输入下,与基材相比,复合涂层表现出最佳的摩擦学性能,同时降低了 COF (~0.40)。Co-SiC 复合涂层的比较耐磨性明显提高,比 AISI 304 不锈钢基材的耐磨性好约 1.7 到约 6.4 倍。在 528 J/mm 的热输入下,与基材相比,复合涂层表现出最佳的摩擦学性能,同时降低了 COF (~0.40)。Co-SiC 复合涂层的比较耐磨性明显提高,比 AISI 304 不锈钢基材的耐磨性好约 1.7 到约 6.4 倍。在 528 J/mm 的热输入下,与基材相比,复合涂层表现出最佳的摩擦学性能,同时降低了 COF (~0.40)。
更新日期:2020-10-01
down
wechat
bug