当前位置: X-MOL 学术Eng. Sci. Technol. Int. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical and experimental analysis of heat and mass transfer in the drying process of the solar drying system
Engineering Science and Technology, an International Journal ( IF 5.1 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jestch.2020.10.003
Mehmet Daş , Erdem Alıç , Ebru Kavak Akpinar

Abstract Design in a solar food drying system is crucial for food drying performance. In order to make effective use of the sun, the use of air-heated solar collectors is gradually increasing in drying systems. Dryer room temperature and pressure distribution modelling is a very important factor for system design and product selection. In this study, the drying air speed, drying temperature, and product moisture content values of a solar drying system were numerically modelled in a time dependent manner. In numerical analysis, temperature and drying air velocity were defined as variable under initial and boundary conditions. Polynomial equations based on time obtained from drying room inlet temperature and drying air velocity data were used. The R2 values of these equations were calculated as 0.96 and 0.91, respectively. COMSOL multiphysics program was used for temperature values, drying air velocity, product moisture content values and drying chamber pressure values modelling. Depending on the position of the sun and the time, the drying chamber inlet temperature values and air velocity values have been change. During the drying process of the product, moisture content values, heat and mass transfer values, drying efficiency values, diffusion coefficient and activation energy values were examined. Experimental data and computed fluid dynamics analysis (CFD) data were compared. Using the CFD numerical analysis program, the drying room temperature, moisture content and air velocity values were modelled with mean absolute percent error (MAPE) of 5.34%, 3.74% and 6.30%, respectively.

中文翻译:

太阳能干燥系统干燥过程传热传质数值与实验分析

摘要 太阳能食品干燥系统的设计对食品干燥性能至关重要。为了有效利用阳光,在干燥系统中逐渐增加使用风热式太阳能集热器。干燥机室温和压力分布建模是系统设计和产品选择的一个非常重要的因素。在这项研究中,太阳能干燥系统的干燥空气速度、干燥温度和产品水分含量值以时间相关的方式进行数值模拟。在数值分析中,温度和干燥空气速度在初始和边界条件下被定义为变量。使用基于从干燥室入口温度和干燥空气速度数据获得的时间的多项式方程。这些方程的 R2 值分别计算为 0.96 和 0.91。COMSOL multiphysics 程序用于温度值、干燥空气速度、产品水分含量值和干燥室压力值建模。根据太阳的位置和时间,干燥室入口温度值和风速值会发生变化。在产品的干燥过程中,对水分含量值、传热传质值、干燥效率值、扩散系数和活化能值进行了检测。实验数据和计算流体动力学分析 (CFD) 数据进行了比较。使用 CFD 数值分析程序,干燥室温度、水分含量和风速值分别以 5.34%、3.74% 和 6.30% 的平均绝对百分比误差 (MAPE) 建模。产品水分值和干燥室压力值建模。根据太阳的位置和时间,干燥室入口温度值和风速值会发生变化。在产品的干燥过程中,对水分含量值、传热传质值、干燥效率值、扩散系数和活化能值进行了检测。实验数据和计算流体动力学分析 (CFD) 数据进行了比较。使用 CFD 数值分析程序,干燥室温度、水分含量和风速值分别以 5.34%、3.74% 和 6.30% 的平均绝对百分比误差 (MAPE) 建模。产品水分值和干燥室压力值建模。根据太阳的位置和时间,干燥室入口温度值和风速值会发生变化。在产品的干燥过程中,对水分含量值、传热传质值、干燥效率值、扩散系数和活化能值进行了检测。实验数据和计算流体动力学分析 (CFD) 数据进行了比较。使用 CFD 数值分析程序,干燥室温度、水分含量和风速值分别以 5.34%、3.74% 和 6.30% 的平均绝对百分比误差 (MAPE) 建模。干燥室入口温度值和风速值发生了变化。在产品的干燥过程中,对水分含量值、传热传质值、干燥效率值、扩散系数和活化能值进行了检测。实验数据和计算流体动力学分析 (CFD) 数据进行了比较。使用 CFD 数值分析程序,干燥室温度、水分含量和风速值分别以 5.34%、3.74% 和 6.30% 的平均绝对百分比误差 (MAPE) 建模。干燥室入口温度值和风速值发生了变化。在产品的干燥过程中,对水分含量值、传热传质值、干燥效率值、扩散系数和活化能值进行了检测。实验数据和计算流体动力学分析 (CFD) 数据进行了比较。使用 CFD 数值分析程序,干燥室温度、水分含量和风速值分别以 5.34%、3.74% 和 6.30% 的平均绝对百分比误差 (MAPE) 建模。
更新日期:2021-02-01
down
wechat
bug