当前位置: X-MOL 学术Mater. Today Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defects, photophysics and passivation in Pb-based colloidal quantum dot photovoltaics
Materials Today Nano ( IF 8.2 ) Pub Date : 2020-10-29 , DOI: 10.1016/j.mtnano.2020.100101
J. Gan , M. Yu , R.L.Z. Hoye , K.P. Musselman , Y. Li , X. Liu , Y. Zheng , X. Zu , S. Li , J.L. MacManus-Driscoll , L. Qiao

Colloidal quantum dots (CQDs) are a class of third-generation materials for photovoltaics (PVs) that are promising for enabling high efficiency devices with potential for exceeding the Shockley-Queisser limit. This is due to their potential to decrease thermal dissipation via multiple exciton generation during charge conversion and collection, which could potentially lead to an increase in the photovoltage or photocurrent in colloidal quantum dot photovoltaics (CQD PVs). But despite a predicted upper efficiency limit of 42%–44%, the highest power conversion efficiencies of these PVs using lead sulfide colloidal quantum dots (PbS CQDs) remains at approximately 13% on a laboratory scale. For further improvements, the fundamental recombination mechanisms need to be studied to determine their effects on the open-circuit voltage (VOC) and charge-carrier lifetime as well as the diffusion length of the carriers. Also, surface defect passivation and interface engineering should be studied. In this work, we discuss different pathways for non-radiative recombination losses in lead sulfide colloidal quantum dot photovoltaics (PbS CQD PVs), as well as the strategies for reducing these losses by the passivation of the surface and interface defects. We also discuss routes to overcome limits in the diffusion length of the carriers through the engineering of charge transport layers. This work provides routes for the fabrication of highly efficient CQD PVs.



中文翻译:

铅基胶体量子点光伏器件中的缺陷,光物理和钝化

胶体量子点(CQD)是一类用于光伏(PV)的第三代材料,有望用于制造具有超过Shockley-Queisser极限的潜力的高效器件。这是由于它们有潜力在电荷转换和收集过程中通过产生多个激子来降低散热,这有可能导致CQD PV中的光电压或光电流增加。但是,尽管预计效率上限为42–44%,但在实验室规模上,使用PbS CQD的这些PV的最高功率转换效率仍保持在约13%。为了进一步改进,需要研究基本的复合机制,以确定其对开路电压(V OC)的影响。)和载流子寿命以及载流子的扩散长度。而且,应该研究表面缺陷钝化和界面工程。在这项工作中,我们讨论了PbS CQD PV中非辐射复合损失的不同途径,以及通过钝化表面和界面缺陷来减少这些损失的策略。我们还讨论了通过电荷传输层工程来克服载流子扩散长度限制的途径。这项工作为制造高效CQD PV提供了途径。

更新日期:2020-12-02
down
wechat
bug