当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fuel-cladding chemical interaction of a prototype annular U-10Zr fuel with Fe-12Cr ferritic/martensitic HT-9 cladding
Journal of Nuclear Materials ( IF 2.8 ) Pub Date : 2020-10-20 , DOI: 10.1016/j.jnucmat.2020.152588
Xiang Liu , Luca Capriotti , Tiankai Yao , Jason M. Harp , Michael T. Benson , Yachun Wang , Fei Teng , Lingfeng He

As an alternative fuel form, the annular metallic fuel design eliminates the liquid sodium bond between the fuel and the cladding, providing back-end fuel cycle and other benefits. The fuel-cladding chemical interaction (FCCI) of annular fuel also presents new features. Here, state-of-the-art electron microscopy and spectroscopy techniques were used to study the FCCI of a prototype annular U-10wt%Zr (U-10Zr) fuel with ferritic/martensitic HT-9 cladding irradiated to 3.3% fission per initial heavy atom. Compared with sodium-bonded solid fuels, negligible amounts of lanthanides were found in the FCCI layer in the investigated helium-bonded annular fuel. Instead, most lanthanides were retained in the newly formed UZr2 phase in the fuel center region. The interdiffusion of iron and uranium resulted in tetragonal (U,Zr)6Fe phase (space group I4/mcm) and cubic (U,Zr)(Fe,Cr)2 phase (space group Fd3¯m). The (U,Zr)(Fe,Cr)2phase contains a high density of voids and intergranular uranium monocarbides of NaCl-type crystal structure (space group Fm3¯m). At the interdiffusion zone and inner cladding interface, a porous lamellar structure composed of alternating Cr-rich layers and U-rich layers was observed. Next to the lamellar region, the unexpected phase transformation from body-centered cubic ferrite (α-Fe) to tetragonal binary Fe-Cr σ phase (space group P42/mnm) occurred, and tetragonal Fe-Cr-U-Si phase (space group I4/mmm) was identified. Due to the diffusion of carbon into the interdiffusion zone, carbon depletion inside the HT-9 led to the disappearance of the martensite lath structure, and intergranular U-rich carbides formed as a result of the diffusion of uranium into the cladding. These detailed new findings reveal the unique features of the FCCI behavior of annular U-Zr fuels, which could be a promising alternative fuel form for high burnup fast reactor applications.



中文翻译:

环形U-10Zr原型燃料与Fe-12Cr铁素体/马氏体HT-9包层的燃料包壳化学相互作用

作为替代燃料形式,环形金属燃料设计消除了燃料和覆层之间的液态钠键,从而提供了后端燃料循环和其他好处。环形燃料的燃料包壳化学相互作用(FCCI)也呈现出新特征。在这里,最新的电子显微镜和光谱技术用于研究原型环状U-10wt%Zr(U-10Zr)燃料的FCCI,该燃料具有铁素体/马氏体HT-9包层,每次初始裂变辐照度为3.3%重原子。与钠键合固体燃料相比,在研究的氦键合环形燃料中,FCCI层中的镧系元素含量可忽略不计。相反,大多数镧系元素保留在燃料中心区域中新形成的UZr 2相中。铁和铀的相互扩散导致四方((U,Zr)6 Fe相(空间群I4 / mcm)和立方(U,Zr)(Fe,Cr)2相(空间群Fd3¯m)。(U,Zr)(Fe,Cr)2相包含高密度的空隙和NaCl型晶体结构(空间群Fm3¯m)。在互扩散区和内包层界面处,观察到了由交替的富Cr层和富U层组成的多孔层状结构。在层状区域附近,从体心立方铁素体(α-Fe)到四方二元Fe-Crσ相的意外相变(空间群P4 2/ mnm),并鉴定出四方的Fe-Cr-U-Si相(空间群I4 / mmm)。由于碳扩散到互扩散区内,HT-9内部的碳耗尽导致了马氏体板条结构的消失,并且由于铀扩散到覆层中而形成了晶间富铀的碳化物。这些详细的新发现揭示了环形U-Zr燃料FCCI行为的独特特征,对于高燃耗快堆应用而言,这可能是一种有前途的替代燃料形式。

更新日期:2020-12-02
down
wechat
bug