当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel elastoplastic topology optimization formulation for enhanced failure resistance via local ductile failure constraints and linear buckling analysis
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.cma.2020.113478
Jonathan B. Russ , Haim Waisman

Abstract A new formulation is proposed for incorporating local ductile failure constraints and buckling resistance into elastoplastic structural design in the context of extreme loading. Many strides have been made in recent years regarding continuum topology optimization with elastoplasticity and buckling separately, but these phenomena are typically not considered together. The formulation we propose is computationally efficient and robust, partly due to its reliance on small strain kinematics and a separation of the elastoplastic response from the buckling load factors computed during the optimization procedure. An aggregate objective function is constructed in which the total work in an elastoplastic analysis is maximized and an aggregation function of the load factors from a separate linear elastic buckling analysis is included. Additionally, local ductile failure constraints are handled via a framework without aggregation functions and a new pseudo buckling mode filter is proposed. Each of the obtained topologies are then subject to a verification step in which a large strain ductile failure model is used in order to compare the performance of the optimized designs obtained for three numerical examples. The results demonstrate that structural responses such as peak load carrying capacity and total external work required to reach the peak load may be significantly improved using the suggested framework. Other interesting observations are also discussed.

中文翻译:

通过局部延性破坏约束和线性屈曲分析增强抗破坏能力的新型弹塑性拓扑优化公式

摘要 提出了一种将局部延性破坏约束和屈曲阻力纳入极端载荷环境下的弹塑性结构设计的新公式。近年来,在分别具有弹塑性和屈曲的连续拓扑优化方面取得了许多进展,但这些现象通常不会一起考虑。我们提出的公式在计算上是高效且稳健的,部分原因是它依赖于小应变运动学以及弹塑性响应与优化过程中计算的屈曲载荷因子的分离。构建了一个聚合目标函数,其中弹塑性分析中的总功被最大化,并且包括来自单独线性弹性屈曲分析的载荷因子的聚合函数。此外,通过没有聚合函数的框架处理局部延性破坏约束,并提出了一种新的伪屈曲模式滤波器。然后对每个获得的拓扑结构进行验证步骤,在该步骤中使用大应变延性破坏模型来比较三个数值示例获得的优化设计的性能。结果表明,使用建议的框架可以显着改善结构响应,例如峰值承载能力和达到峰值负载所需的总外部功。还讨论了其他有趣的观察结果。然后对每个获得的拓扑结构进行验证步骤,在该步骤中使用大应变延性破坏模型来比较三个数值示例获得的优化设计的性能。结果表明,使用建议的框架可以显着改善结构响应,例如峰值承载能力和达到峰值负载所需的总外部功。还讨论了其他有趣的观察结果。然后对每个获得的拓扑结构进行验证步骤,在该步骤中使用大应变延性破坏模型来比较三个数值示例获得的优化设计的性能。结果表明,使用建议的框架可以显着改善结构响应,例如峰值承载能力和达到峰值负载所需的总外部功。还讨论了其他有趣的观察结果。
更新日期:2021-01-01
down
wechat
bug