当前位置: X-MOL 学术Ad Hoc Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive multi-PHY IEEE802.15.4 TSCH in sub-GHz industrial wireless networks
Ad Hoc Networks ( IF 4.4 ) Pub Date : 2020-10-23 , DOI: 10.1016/j.adhoc.2020.102330
Dries Van Leemput , Jan Bauwens , Robbe Elsas , Jeroen Hoebeke , Wout Joseph , Eli De Poorter

To provide wireless coverage in challenging industrial environments, IEEE802.15.4 Time-Slotted Channel Hopping (TSCH) presents a robust medium access protocol. Using multiple Physical Layers (PHYs) could improve TSCH even more in these heterogeneous environments. However, TSCH only defines one fixed-duration timeslot structure allowing one packet transmission. Using multiple PHYs with various data rates therefore does not yield any improvements because of this single-packet limitation combined with a fixed slot duration. We therefore defined two alternative timeslot structures allowing multiple packets transmissions to increase the throughput for higher data rate PHYs while meeting a fixed slot duration. In addition, we developed a flexible Link Quality Estimation (LQE) technique to dynamically switch between PHYs depending on the current environment. This paper covers a theoretical evaluation of the proposed slot structures in terms of throughput, energy consumption and memory constraints backed with an experimental validation, using a proof-of-concept implementation, which includes topology and PHY switching. Our results show that a 153 % higher net throughput can be obtained with 84 % of the original energy consumption and confirm our theoretical evaluation with a 99 % accuracy. Additionally, we showed that in a real-life testbed of 33 nodes, spanning three floors and covering 2550 m2, a compact multi-PHY TSCH network can be formed. By distinguishing between reliable and high throughput PHYs, a maximum hop count of three was achieved with a maximum throughput of 219 kbps. Consequently, using multiple (dynamic) PHYs in a single TSCH network is possible while still being backwards compatible to the original fixed slot duration TSCH standard.



中文翻译:

低于GHz工业无线网络中的自适应多PHY IEEE802.15.4 TSCH

为了在具有挑战性的工业环境中提供无线覆盖,IEEE802.15.4时隙信道跳变(TSCH)提出了一种强大的媒体访问协议。在这些异构环境中,使用多个物理层(PHY)可以进一步改善TSCH。然而,TSCH仅定义了一种允许一个分组传输的固定持续时间的时隙结构。因此,由于这种单个数据包的限制和固定的时隙持续时间,使用具有各种数据速率的多个PHY不会产生任何改善。因此,我们定义了两个可选的时隙结构,允许多个数据包传输,以提高较高数据速率PHY的吞吐量,同时满足固定的时隙持续时间。此外,我们开发了一种灵活的链路质量估计(LQE)技术,可以根据当前环境在PHY之间动态切换。本文使用概念验证实现(包括拓扑和PHY交换),对所建议的插槽结构在吞吐量,能耗和内存限制方面进行了理论评估,并进行了实验验证。我们的结果表明,在原始能耗的84%的情况下,可以提高153%的净吞吐量,并以99%的精度证实了我们的理论评估。此外,我们还显示,在一个包含33个节点的真实试验台中,该试验台横跨三层,覆盖2550 m 使用概念验证实现(包括拓扑和PHY切换),通过实验验证来支持能耗和内存限制。我们的结果表明,在原始能耗的84%的情况下,可以提高153%的净吞吐量,并以99%的精度证实了我们的理论评估。此外,我们还显示,在一个包含33个节点的真实试验台中,该试验台横跨三层,覆盖2550 m 使用概念验证实现(包括拓扑和PHY切换),通过实验验证来支持能耗和内存限制。我们的结果表明,在原始能耗的84%的情况下,可以提高153%的净吞吐量,并以99%的精度证实了我们的理论评估。此外,我们还显示,在一个包含33个节点的真实试验台中,该试验台横跨三层,覆盖2550 m参照图2,可以形成紧凑的多PHY TSCH网络。通过区分可靠的和高吞吐量的PHY,最大跳数为3,最大吞吐量为219 kbps。因此,可以在单个TSCH网络中使用多个(动态)PHY,同时仍然向后兼容原始固定时隙持续时间TSCH标准。

更新日期:2020-11-09
down
wechat
bug