当前位置: X-MOL 学术Integr. Mater. Manuf. Innov. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
AMB2018-03: Benchmark Physical Property Measurements for Material Extrusion Additive Manufacturing of Polycarbonate
Integrating Materials and Manufacturing Innovation ( IF 3.3 ) Pub Date : 2020-10-29 , DOI: 10.1007/s40192-020-00188-y
Daniel P. Cole , Frank Gardea , Todd C. Henry , Jonathan E. Seppala , Edward J. Garboczi , Kalman D. Migler , Christopher M. Shumeyko , Jeffrey R. Westrich , Sara V. Orski , Jeffrey L. Gair

Material extrusion (MatEx) is finding increasing applications in additive manufacturing of thermoplastics due to the ease of use and the ability to process disparate polymers. Since part strength is anisotropic and frequently deviates negatively with respect to parts produced by injection molding, an urgent challenge is to predict final properties of parts made through this method. A nascent effort is underway to develop theoretical and computational models of MatEx part properties, but these efforts require comprehensive experimental data for guidance and validation. As part of the AM-Bench framework, we provide here a thorough set of measurements on a model system: polycarbonate printed in a simple rectangular shape. For the precursor material (as-received filament), we perform rheology, gel permeation chromatography, and dynamical mechanical analysis, to ascertain critical material parameters such as molar mass distribution, glass transition, and shear thinning. Following processing, we conduct X-ray computed tomography, scanning electron microscopy, depth sensing indentation, and atomic force microscopy modulus mapping. These measurements provide information related to pores, method of failure, and local modulus variations. Finally, we conduct tensile testing to assess strength and degree of anisotropy of mechanical properties. We find several effects that lead to degradation of tensile properties including the presence of pore networks, poor interfacial bonding, variations in interfacial mechanical behavior between rasters, and variable interaction of the neighboring builds within the melt state. The results provide insight into the processing–structure–property relationships and should serve as benchmarks for the development of mechanical models.



中文翻译:

AMB2018-03:聚碳酸酯材料挤出增材制造的基准物理性能测量

由于易用性和加工异构聚合物的能力,材料挤出(MatEx)在热塑性塑料的增材制造中发现了越来越多的应用。由于零件强度是各向异性的,并且相对于通过注塑成型生产的零件经常会产生不利的偏差,因此迫切的挑战是预测通过此方法制成的零件的最终性能。开发MatEx零件特性的理论和计算模型的初期努力正在进行中,但是这些努力需要全面的实验数据来指导和验证。作为AM-Bench框架的一部分,我们在模型系统上提供了一组完整的测量值:以简单矩形打印的聚碳酸酯。对于前体材料(原丝),我们进行流变,凝胶渗透色谱分析,以及动态力学分析,以确定关键的材料参数,例如摩尔质量分布,玻璃化转变和剪切稀化。经过处理,我们进行X射线计算机断层扫描,扫描电子显微镜,深度感应压痕和原子力显微镜模量映射。这些测量提供与孔,破坏方法和局部模量变化有关的信息。最后,我们进行拉伸测试以评估强度和机械性能的各向异性程度。我们发现几种导致拉伸性能下降的效应,包括孔隙网络的存在,不良的界面结合,栅格之间界面机械行为的变化以及熔体状态下相邻结构的可变相互作用。

更新日期:2020-10-30
down
wechat
bug