当前位置: X-MOL 学术Ramanujan J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Erdős–Fuchs theorem for ordered representation functions
The Ramanujan Journal ( IF 0.6 ) Pub Date : 2020-10-28 , DOI: 10.1007/s11139-020-00326-2
Gonzalo Cao-Labora , Juanjo Rué , Christoph Spiegel

Let \(k\ge 2\) be a positive integer. We study concentration results for the ordered representation functions \(r^{{ \le }}_k({\mathcal {A}},n) = \# \big \{ (a_1 \le \dots \le a_k) \in {\mathcal {A}}^k : a_1+\dots +a_k = n \big \}\) and \( r^{{<}}_k({\mathcal {A}},n) = \# \big \{ (a_1< \dots < a_k) \in {\mathcal {A}}^k : a_1+\dots +a_k = n \big \}\) for any infinite set of non-negative integers \({\mathcal {A}}\). Our main theorem is an Erdős–Fuchs-type result for both functions: for any \(c > 0\) and \(\star \in \{\le ,<\}\) we show that

$$\begin{aligned} \sum _{j = 0}^{n} \Big ( r^{\star }_k ({\mathcal {A}},j) - c \Big )= o\big (n^{1/4}\log ^{-1/2}n\big ) \end{aligned}$$

is not possible. We also show that the mean squared error

$$\begin{aligned} E^\star _{k,c}({\mathcal {A}},n)=\frac{1}{n} \sum _{j = 0}^{n} \Big ( r^{\star }_k({\mathcal {A}},j) - c \Big )^2 \end{aligned}$$

satisfies \(\limsup _{n \rightarrow \infty } E^\star _{k,c}({\mathcal {A}},n)>0\). These results extend two theorems for the non-ordered representation function proved by Erdős and Fuchs in the case of \(k=2\) (J. of the London Math. Society 1956).



中文翻译:

有序表示函数的Erdős-Fuchs定理

\(k \ ge 2 \)为正整数。我们研究有序表示函数\(r ^ {{\ le}} _ k({\ mathcal {A}},n)= \#\ big \ {(a_1 \ le \ dots \ le a_k)\ in {\ mathcal {A}} ^ k:a_1 + \ dots + a_k = n \ big \} \)\(r ^ {{<<}} _ k({\ mathcal {A}},n)= \#\ big \ {(a_1 <\ dots <a_k)\ in {\ mathcal {A}} ^ k:a_1 + \ dots + a_k = n \ big \} \)对于任意无限数量的非负整数\({\ mathcal { A}} \)。我们的主要定理是两个函数的Erdős-Fuchs型结果:对于任何\(c> 0 \)\(\ star \ in \ {\ le,<\} \),我们证明

$$ \ begin {aligned} \ sum _ {j = 0} ^ {n} \ Big(r ^ {\ star} _k({\ mathcal {A}},j)-c \ Big)= o \ big( n ^ {1/4} \ log ^ {-1/2} n \ big)\ end {aligned} $$

不可能。我们还表明均方误差

$$ \ begin {aligned} E ^ \ star _ {k,c}({\ mathcal {A}},n)= \ frac {1} {n} \ sum _ {j = 0} ^ {n} \大(r ^ {\ star} _k({\ mathcal {A}},j)-c \ Big)^ 2 \ end {aligned} $$

满足\(\ limsup _ {n \ rightarrow \ infty} E ^ \ star _ {k,c}({\ mathcal {A}},n)> 0 \)。这些结果扩展了由Erdős和Fuchs在\(k = 2 \)的情况下证明的无序表示函数的两个定理(J. of London Math。Society 1956)。

更新日期:2020-10-30
down
wechat
bug