当前位置: X-MOL 学术Russ. J. Non-ferrous Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Properties of the Surface Layer after High-Energy Treatment by Powder Particles
Russian Journal of Non-Ferrous Metals ( IF 0.6 ) Pub Date : 2020-10-21 , DOI: 10.3103/s1067821220050120
E. V. Petrov , I. V. Saikov , G. R. Saikova , V. S. Trofimov

Abstract

Experiments on the high-energy surface treatment of a substrate made of St.3 structural steel by the flow of particles of tungsten, nickel, and titanium nitride particles are performed. The collision pressure of the particles accelerated by the explosion energy on a steel target is evaluated using the momentum conservation equation and linear equation of the impact adiabat of the particle material. It is established that the collision pressure is, GPa, 62 for the tungsten particle, 48 for the nickel particle, and 41 for the titanium nitride particle. The particle heating temperature with the collision with the surface of a steel target is calculated allowing for conservation conditions of the mass and momentum on the shock-wave front. The maximal particle heating temperature in their collision place with the substrate surface (at a particle velocity of 2000 m/s) is, K, 1103 for the tungsten particles, 755 for the nickel particles, and 589 for the titanium nitride particles. It is shown that hardness of a steel target increases after its high-energy treatment by the particle flow. Maximal hardening of the surface layer of a steel target when compared with initial microhardness increases 32–55% and is observed at a depth of 2–4 mm from the treatment surface. Then it decreases to the microhardness of the initial material (170 HV) at a distance of 15–20 mm from the treated surface.



中文翻译:

粉末粒子高能处理后的表面层特性

摘要

通过钨,镍和氮化钛颗粒的流动,对由St.3结构钢制成的基板进行高能表面处理的实验。使用粒子材料的冲击绝热体的动量守恒方程和线性方程,评估由爆炸能量加速的粒子在钢靶上的碰撞压力。可以确定,碰撞压力为GPa,钨颗粒为62,镍颗粒为48,氮化钛颗粒为41。计算出与钢靶表面碰撞时的粒子加热温度,从而考虑到了冲击波前沿质量和动量的守恒条件。在它们与基板表面碰撞的位置(以2000 m / s的粒子速度)的最大粒子加热温度为K,钨粒子为1103,镍粒子为755,氮化钛粒子为589。可以看出,通过粒子流对其进行高能处理后,钢靶的硬度增加。与初始显微硬度相比,钢靶材表面层的最大硬化增加了32–55%,并且在距处理表面2-4 mm的深度处观察到。然后,在距处理过的表面15–20 mm处,其硬度降低至初始材料(170 HV)的显微硬度。可以看出,通过粒子流对其进行高能处理后,钢靶的硬度增加。与初始显微硬度相比,钢靶材表面层的最大硬化增加了32–55%,并且在距处理表面2-4 mm的深度处观察到。然后在距被处理表面15–20 mm的距离处降低到初始材料的显微硬度(170 HV)。可以看出,通过粒子流对其进行高能处理后,钢靶的硬度增加。与初始显微硬度相比,钢靶材表面层的最大硬化增加了32–55%,并且在距处理表面2-4 mm的深度处观察到。然后在距被处理表面15–20 mm的距离处降低到初始材料的显微硬度(170 HV)。

更新日期:2020-10-30
down
wechat
bug