当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Quantitative study of the dynamic response of soft tubing for pressure-driven flow in a microfluidics context
Microfluidics and Nanofluidics ( IF 2.8 ) Pub Date : 2020-10-21 , DOI: 10.1007/s10404-020-02396-6
Marie Hébert , William Baxter , Jan P. Huissoon , Carolyn L. Ren

Microfluidics typically uses either a syringe pump that regulates the flow rate in microchannels or a pressure pump that controls the inlet pressures to drive the flow. In the context of pressure-driven flow, a reservoir holder containing liquid samples is normally used to interface the pressure pump with the microfluidic chip via soft tubing. The tubing connecting the pump and holder transports the pressurized air while the tubing connecting the holder and chip transports the liquid samples. The pressure output from the pump is usually assumed to be stable and the same as that applied to the liquid in the chip; however, in practice this assumption is often incorrect and may negatively impact chip performance. This assumption is critically challenged when applied to microfluidic chips involving dynamic control of fluids since the pressures are constantly varied (at > 10 Hz). This study presents a method for investigating, quantifying and modelling the pump stability and the dynamics of the air tubing using two pressure sensors. The relationship between the pressure output from the pump and the reservoir holder pressure is generalized as a first-order linear system. This relationship allows the software that controls the pressure pump to output the required pressure to the reservoir holder and thus to the microfluidic chip. These results should significantly improve the performance of microfluidic chips using active fluid control, and may also benefit passive fluid control applications.



中文翻译:

在微流体环境下对压力驱动的流动的软管动态响应的定量研究

微流体技术通常使用调节微通道流速的注射泵或控制入口压力以驱动流动的压力泵。在压力驱动流的情况下,通常使用包含液体样品的储液罐支架通过软管将压力泵与微流体芯片连接。连接泵和支架的管道输送压缩空气,而连接支架和切屑的管道输送液体样品。通常认为从泵输出的压力是稳定的,并且与施加在切屑中的液体的压力相同;但是,实际上,这种假设通常是不正确的,并且可能会对芯片性能产生负面影响。当将这种假设应用于涉及流体动态控制的微流体芯片时,由于压力会不断变化(> 10 Hz),因此这一假设受到了严峻挑战。这项研究提出了一种使用两个压力传感器调查,量化和建模泵的稳定性和空气管动力学的方法。从泵输出的压力和储油罐支架压力之间的关系被概括为一阶线性系统。这种关系允许控制压力泵的软件将所需的压力输出到储液罐支架,从而输出到微流体芯片。这些结果将显着改善使用主动流体控制的微流体芯片的性能,也可能有益于被动流体控制应用。这项研究提出了一种使用两个压力传感器调查,量化和建模泵的稳定性和空气管动力学的方法。从泵输出的压力和储油罐支架压力之间的关系被概括为一阶线性系统。这种关系允许控制压力泵的软件将所需的压力输出到储液罐支架,从而输出到微流体芯片。这些结果将显着改善使用主动流体控制的微流体芯片的性能,也可能有益于被动流体控制应用。这项研究提出了一种使用两个压力传感器调查,量化和建模泵的稳定性和空气管动力学的方法。从泵输出的压力和储油罐支架压力之间的关系被概括为一阶线性系统。这种关系允许控制压力泵的软件将所需的压力输出到储液罐支架,从而输出到微流体芯片。这些结果将显着改善使用主动流体控制的微流体芯片的性能,也可能有益于被动流体控制应用。从泵输出的压力和储油罐支架压力之间的关系被概括为一阶线性系统。这种关系允许控制压力泵的软件将所需的压力输出到储液罐支架,从而输出到微流体芯片。这些结果将显着改善使用主动流体控制的微流体芯片的性能,也可能有益于被动流体控制应用。从泵输出的压力和储油罐支架压力之间的关系被概括为一阶线性系统。这种关系允许控制压力泵的软件将所需的压力输出到储液罐支架,从而输出到微流体芯片。这些结果将显着改善使用主动流体控制的微流体芯片的性能,也可能有益于被动流体控制应用。

更新日期:2020-10-30
down
wechat
bug