当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A micromirror array with annular partitioning for high-speed random-access axial focusing
Light: Science & Applications ( IF 20.6 ) Pub Date : 2020-10-29 , DOI: 10.1038/s41377-020-00420-6
Nathan Tessema Ersumo , Cem Yalcin , Nick Antipa , Nicolas Pégard , Laura Waller , Daniel Lopez , Rikky Muller

Dynamic axial focusing functionality has recently experienced widespread incorporation in microscopy, augmented/virtual reality (AR/VR), adaptive optics and material processing. However, the limitations of existing varifocal tools continue to beset the performance capabilities and operating overhead of the optical systems that mobilize such functionality. The varifocal tools that are the least burdensome to operate (e.g. liquid crystal, elastomeric or optofluidic lenses) suffer from low (≈100 Hz) refresh rates. Conversely, the fastest devices sacrifice either critical capabilities such as their dwelling capacity (e.g. acoustic gradient lenses or monolithic micromechanical mirrors) or low operating overhead (e.g. deformable mirrors). Here, we present a general-purpose random-access axial focusing device that bridges these previously conflicting features of high speed, dwelling capacity and lightweight drive by employing low-rigidity micromirrors that exploit the robustness of defocusing phase profiles. Geometrically, the device consists of an 8.2 mm diameter array of piston-motion and 48-μm-pitch micromirror pixels that provide 2π phase shifting for wavelengths shorter than 1100 nm with 10–90% settling in 64.8 μs (i.e., 15.44 kHz refresh rate). The pixels are electrically partitioned into 32 rings for a driving scheme that enables phase-wrapped operation with circular symmetry and requires <30 V per channel. Optical experiments demonstrated the array’s wide focusing range with a measured ability to target 29 distinct resolvable depth planes. Overall, the features of the proposed array offer the potential for compact, straightforward methods of tackling bottlenecked applications, including high-throughput single-cell targeting in neurobiology and the delivery of dense 3D visual information in AR/VR.



中文翻译:

具有环形分隔的微镜阵列,用于高速随机访问轴向聚焦

动态轴向聚焦功能最近在显微镜,增强/虚拟现实(AR / VR),自适应光学和材料加工领域得到了广泛的应用。但是,现有的变焦工具的局限性继续困扰着调动这种功能的光学系统的性能和操作开销。操作麻烦最少的变焦工具(例如液晶,弹性或光流体镜片)的刷新率较低(约100 Hz)。相反,最快的设备会牺牲一些关键功能,例如其居住能力(例如,声梯度透镜或整体式微机械镜)或较低的操作开销(例如,可变形镜)。这里,我们提出了一种通用的随机访问轴向聚焦装置,该装置通过利用利用散焦相位分布的鲁棒性的低刚性微镜来桥接这些先前冲突的高速,驻留能力和轻量驱动的特征。从几何学上讲,该设备由一个直径为8.2 mm的活塞运动阵列和48μm间距的微镜像素组成,它们为1100 nm以下的波长提供2π相移,并在64.8μs内建立10–90%的稳定时间(即15.44 kHz刷新率) )。像素被电划分为32个环,以实现一种驱动方案,该方案可实现具有圆形对称性的相位缠绕操作,每个通道要求<30V。光学实验表明,该阵列具有宽泛的聚焦范围,并具有针对29个不同的可分辨深度平面的测量能力。总体,

更新日期:2020-10-30
down
wechat
bug