当前位置: X-MOL 学术Particuology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries
Particuology ( IF 4.1 ) Pub Date : 2020-10-24 , DOI: 10.1016/j.partic.2020.09.004
Yong Lu , Yudong Zhang , Qiu Zhang , Fangyi Cheng , Jun Chen

Ni-rich layered oxides with chemical formula of LiNixCoyMnzO2 or LiNixCoyAlzO2 (x + y + z = 1, x ≥ 0.6) have been considered as promising cathode materials for lithium-ion batteries (LIBs) because of their high specific capacity (≥180 mAh g–1) and acceptable manufacture cost. However, the problems associated with high Ni content severely restrict their large-scale applications. In this review, we summarize the recent advances in Ni-rich layered oxide particle materials for LIBs. We begin with the introduction of the structure, redox mechanism, and problems of Ni-rich layered oxides, mainly including residual lithium compounds, gas evolution, rock-salt phase formation, microcrack of particles, dissolution of transition-metal ions, and thermal runaway. Then, four strategies (primary particle engineering, surface coating, doping, concentration gradient design) toward solving the problems of Ni-rich layered oxides will be systematically discussed with the emphasis on structure-performance relationships. To achieve satisfied comprehensive performance and accelerate large-scale applications of Ni-rich layered oxides, the combination of two or more strategies (particle engineering and surface/bulk stabilization techniques) with synergistic effects is necessary in future works. This review would promote further research and application of high-performance Ni-rich layered oxide particle materials for LIBs.



中文翻译:

锂离子电池用富镍层状氧化物颗粒材料的最新进展

用的LiNi的化学式富Ni层状氧化物XýŽ Ò 2或的LiNi Xý的Al ž ø 2X  +  Ŷ  +  Ž  = 1,X  ≥0.6)已被视为有前途的正极材料的锂离子电池(LIB),因为它们的比容量高(≥180mAh g –1)和可接受的制造成本。然而,与高Ni含量有关的问题严重限制了它们的大规模应用。在这篇综述中,我们总结了用于LIB的富镍层状氧化物颗粒材料的最新进展。我们首先介绍富镍层状氧化物的结构,氧化还原机理和问题,主要包括残留的锂化合物,气体逸出,岩盐相形成,颗粒微裂纹,过渡金属离子溶解和热失控。然后,系统地讨论了解决富镍层状氧化物问题的四种策略(一次粒子工程,表面涂层,掺杂,浓度梯度设计),重点是结构-性能关系。为了获得满意的综合性能并加速富镍层状氧化物的大规模应用,在未来的工作中必须将两种或更多种具有协同作用的策略(颗粒工程和表面/本体稳定技术)相结合。这项审查将促进锂离子电池的高性能富镍层状氧化物颗粒材料的进一步研究和应用。

更新日期:2020-12-16
down
wechat
bug