当前位置: X-MOL 学术IEEE J. Solid-State Circuits › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons
IEEE Journal of Solid-State Circuits ( IF 4.6 ) Pub Date : 2020-11-01 , DOI: 10.1109/jssc.2020.3024678
Jeroen Petrus Gerardus Van Dijk , Bishnu Patra , Sushil Subramanian , Xiao Xue , Nodar Samkharadze , Andrea Corna , Charles Jeon , Farhana Sheikh , Esdras Juarez-Hernandez , Brando Perez Esparza , Huzaifa Rampurawala , Brent R. Carlton , Surej Ravikumar , Carlos Nieva , Sungwon Kim , Hyung-Jin Lee , Amir Sammak , Giordano Scappucci , Menno Veldhorst , Lieven M. K. Vandersypen , Edoardo Charbon , Stefano Pellerano , Masoud Babaie , Fabio Sebastiano

Building a large-scale quantum computer requires the co-optimization of both the quantum bits (qubits) and their control electronics. By operating the CMOS control circuits at cryogenic temperatures (cryo-CMOS), and hence in close proximity to the cryogenic solid-state qubits, a compact quantum-computing system can be achieved, thus promising scalability to the large number of qubits required in a practical application. This work presents a cryo-CMOS microwave signal generator for frequency-multiplexed control of $4\times 32$ qubits (32 qubits per RF output). A digitally intensive architecture offering full programmability of phase, amplitude, and frequency of the output microwave pulses and a wideband RF front end operating from 2 to 20 GHz allow targeting both spin qubits and transmons. The controller comprises a qubit-phase-tracking direct digital synthesis (DDS) back end for coherent qubit control and a single-sideband (SSB) RF front end optimized for minimum leakage between the qubit channels. Fabricated in Intel 22-nm FinFET technology, it achieves a 48-dB SNR and 45-dB spurious-free dynamic range (SFDR) in a 1-GHz data bandwidth when operating at 3 K, thus enabling high-fidelity qubit control. By exploiting the on-chip 4096-instruction memory, the capability to translate quantum algorithms to microwave signals has been demonstrated by coherently controlling a spin qubit at both 14 and 18 GHz.

中文翻译:

用于自旋量子位和传输器的宽带频率复用控制的可扩展 Cryo-CMOS 控制器

构建大规模量子计算机需要对量子位(qubit)及其控制电子设备进行协同优化。通过在低温 (cryo-CMOS) 下操作 CMOS 控制电路,并因此靠近低温固态量子位,可以实现紧凑的量子计算系统,从而有望扩展到所需的大量量子位实际应用。这项工作提出了一种低温 CMOS 微波信号发生器,用于频率多路复用控制 $4\times 32$ qubits(每个 RF 输出 32 qubits)。数字密集型架构提供对输出微波脉冲的相位、幅度和频率的完全可编程性,以及工作频率为 2 至 20 GHz 的宽带 RF 前端,允许同时针对自旋量子位和 transmon。该控制器包括一个用于相干量子位控制的量子位相位跟踪直接数字合成 (DDS) 后端和一个为最小化量子位通道之间的泄漏而优化的单边带 (SSB) 射频前端。它采用英特尔 22 纳米 FinFET 技术制造,在 3 K 下运行时在 1 GHz 数据带宽内实现 48 dB SNR 和 45 dB 无杂散动态范围 (SFDR),从而实现高保真量子位控制。通过利用片上 4096 指令存储器,通过在 14 GHz 和 18 GHz 下相干控制自旋量子位,证明了将量子算法转换为微波信号的能力。它在 3 K 下运行时在 1 GHz 数据带宽内实现了 48 dB SNR 和 45 dB 无杂散动态范围 (SFDR),从而实现了高保真量子位控制。通过利用片上 4096 指令存储器,通过在 14 GHz 和 18 GHz 下相干控制自旋量子位,证明了将量子算法转换为微波信号的能力。它在 3 K 下运行时在 1 GHz 数据带宽内实现了 48 dB SNR 和 45 dB 无杂散动态范围 (SFDR),从而实现了高保真量子位控制。通过利用片上 4096 指令存储器,通过在 14 GHz 和 18 GHz 下相干控制自旋量子位,证明了将量子算法转换为微波信号的能力。
更新日期:2020-11-01
down
wechat
bug