当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of Surface Acoustic Wave Sensors on Chemical Sciences
ACS Sensors ( IF 8.2 ) Pub Date : 2020-10-23 , DOI: 10.1021/acssensors.0c02028
Roya Maboudian

I was very saddened this month to learn about the passing of a dear colleague, Prof. Richard (Dick) M. White. Since some of our readers may not know him, I have decided to dedicate this editorial to him. Dick White obtained his A.B. and A.M. degrees in Engineering Science and Applied Physics, and his Ph.D. degree in Applied Physics in 1956, all from Harvard University. After working as a research scientist at the General Electric Research Laboratory in Palo Alto, California, he joined the University of California at Berkeley in 1962 as a faculty member in the Department of Electrical Engineering (now Electrical Engineering and Computer Science) where he made seminal contributions to the field of ultrasonics and microelectromechanical systems (MEMS). He received many awards and honors, including election to the U.S. National Academy of Engineering, IEEE Cledo Brunetti Award, and IEEE/Royal Society of Edinburgh James Clerk Maxwell Medal (together with close colleague, Prof. Richard Muller). Dick’s recent passing caused me to reflect on the field of ultrasonics, and in particular, surface acoustic waves and their applications to chemical sensing. Surface acoustic waves (SAW) were first described by Lord Rayleigh in isotropic solids in 1885(1) and later in 1955, by Stoneley in anisotropic media.(2) However, surface waves began to be applied in electronic devices only after White and one of his first graduate students, Voltmer, demonstrated in 1965(3) that these waves could be generated in piezoelectric materials using microfabricated interdigitated transducers (IDTs). The SAW filters allowed electronics to move away from bulky components, and their two-dimensional structure made them amenable to mass production. Today’s electronics and mobile technology rely on SAW devices to function properly. Then in 1979, Wohltjen and Dessy showed that Rayleigh-type surface acoustic waves can be used for chemical sensing applications in the gas phase.(4) Since then, sensors based on other surface waves such as Love waves (named after its discoverer, A.E.H. Love in 1911(5)), Lamb flexural plate waves (first demonstrated as sensor by White(6)), and shear horizontal surface-acoustic waves(7) have also been developed for detection of various chemicals and biological entities in fluidic media. Important characteristics of SAW-based sensors include high sensitivity, fast response time, planar structure which makes them compatible with integrated circuit microfabrication technologies, small size, low cost, and the ability to work in wired and wireless modes. The ability to work in wireless mode makes it possible to operate the SAW sensors in harsh environments such as high temperature, high pressure, and toxic conditions (e.g., in automotive, aerospace, mining, and oil and gas industries). A few years after arriving at Berkeley (around 1995), I had the good fortune of being introduced to Dick by my friend and collaborator, Prof. Roger Howe, who also introduced me to the Berkeley Sensor & Actuator Center (BSAC). The Center, with support from the U.S. National Science Foundation, was established by Dick and Richard Muller in 1986 to develop the science, engineering and technology of MEMS and microsensors, and has served as a model for close collaboration between university, industry, and government agencies. I had many conversations with Dick over the years. He was always happy to share with me the projects he was excited about (most recently, in the applications of microsensors embedded in mobile phones to measure air pollution and create a geographical map of hazardous zones, as well as microsensors for power distribution cables, both overhead and underground). He was also eager to learn about what I was working on and always had some surface chemistry and interface science questions to ask. Despite his impressive contributions, he remained humble and utterly curious and imaginative. One of my favorite lines from Dick’s interview as a part of IEEE Oral History(8) is, “But for me, one of the most marvelous things is to invent something, and for a couple of weeks be the only person in the world who knows this.” At ACS Sensors, we have published many exciting papers based on SAW devices. To mention a few, in the July issue, Fu and collaborators reported a sensing concept based on the integration of electromagnetic metamaterials and thin-film SAW technology on flexible woven carbon fibers, and demonstrated its capabilities for wireless, noninvasive, and continuous monitoring of biomolecules (doi.org/10.1021/acssensors.0c00948). In the May issue, Duan and colleagues published a new sensing mechanism based on the significant mass-loading effect on the IDT electrodes of SAW resonators (doi.org/10.1021/acssensors.0c00259). By combining simulation and experiment, they demonstrated mass sensitivity about 1000 times higher than that of conventional SAW devices, and TNT detection with high sensitivity. In another recent paper, Chérioux and coauthors demonstrated a SAW wireless sensor with ground penetrating Radar for subsurface detection of H2S in soil (doi.org/10.1021/acssensors.0c00013). Lastly, in another paper published recently, Zhou and coauthors presented a strategy to evaluate blood hemostasis using single-port Love-mode surface acoustic wave sensors (doi.org/10.1021/acssensors.9b02382). In all of these papers, a common recurrence is the IDT structure invented by Dick White in 1965, a testament to his legacy. Views expressed in this editorial are those of the author and not necessarily the views of the ACS. This article references 8 other publications.

中文翻译:

表面声波传感器对化学的影响

本月,我为得知一位亲爱的同事Richard(Dick)M. White教授的逝世感到非常难过。由于某些读者可能不认识他,因此我决定将这篇社论献给他。迪克·怀特(Dick White)获得了工程科学和应用物理专业的文学学士和硕士学位,以及博士学位。1956年获得哈佛大学应用物理学博士学位。在加利福尼亚州帕洛阿尔托的通用电气研究实验室担任研究科学家后,他于1962年加入加州大学伯克利分校,担任电气工程系(现为电气工程和计算机科学)的教职员工对超声和微机电系统(MEMS)领域的贡献。他获得了许多奖项和荣誉,包括选地工程的美国国家科学院,IEEE Cledo Brunetti奖和爱丁堡IEEE皇家学会James Clerk Maxwell奖章(以及密友Richard Muller教授)。迪克(Dick)的最近逝世使我反思了超声领域,尤其是表面声波及其在化学传感中的应用。表面声波(SAW)最早由瑞利勋爵(Lord Rayleigh)于1885年[1]在各向同性固体中描述,随后于1955年由斯通利(Stoneley)在各向异性介质中描述[2]。他的第一批研究生伏尔特默(Voltmer)于1965年证明(3),这些波可以用微细的叉指式换能器(IDT)在压电材料中产生。SAW滤波器可以使电子设备远离笨重的组件,而且它们的二维结构使其可以批量生产。当今的电子和移动技术依靠SAW设备来正常运行。然后在1979年,Wohltjen和Dessy证明了瑞利型表面声波可用于气相化学传感应用。(4)从那时起,基于其他表面波的传感器(例如Love波(以其发现者AEH命名) 1911年(5)的《爱》,兰姆挠性板波(White(6)首次被证明是传感器)和水平表面声波横波(7)也已被开发出来,用于检测流体介质中的各种化学物质和生物实体。基于声表面波的传感器的重要特征包括高灵敏度,快速响应时间,平面结构,使其与集成电路微细加工技术兼容,体积小,低成本,以及在有线和无线模式下工作的能力。在无线模式下工作的能力使SAW传感器可以在苛刻的环境下运行,例如高温,高压和有毒条件(例如,在汽车,航空航天,采矿以及石油和天然气工业中)。到达伯克利的几年后(大约1995年),我有幸被我的朋友和合作者Roger Howe教授介绍给了Dick,他也向我介绍了伯克利传感器和执行器中心(BSAC)。该中心在美国国家科学基金会的支持下,由Dick和Richard Muller于1986年成立,旨在发展MEMS和微传感器的科学,工程和技术,并已成为大学,企业和政府之间紧密合作的典范机构。这些年来,我与Dick进行了许多对话。他总是很乐意与我分享他兴奋的项目(最近,在移动电话中嵌入的微传感器在测量空气污染,创建危险区域地理图以及配电电缆微传感器的应用中,两者架空和地下)。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 他总是很乐意与我分享他兴奋的项目(最近,在移动电话中嵌入的微传感器在测量空气污染,创建危险区域地理图以及配电电缆微传感器的应用中,两者架空和地下)。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 他总是很乐意与我分享他兴奋的项目(最近,在移动电话中嵌入的微传感器在测量空气污染,创建危险区域地理图以及配电电缆微传感器的应用中,两者架空和地下)。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 嵌入到移动电话中的微传感器的应用中,以测量空气污染并创建危险区域的地理图,以及用于架空和地下配电电缆的微传感器。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 嵌入到移动电话中的微传感器的应用中,以测量空气污染并创建危险区域的地理图,以及用于架空和地下配电电缆的微传感器。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 无论是高架还是地下)。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 无论是高架还是地下)。他也渴望了解我正在从事的工作,并且总是要提出一些表面化学和界面科学方面的问题。尽管他做出了杰出的贡献,但他仍然谦虚,完全好奇和富有想象力。迪克(Dick)在IEEE口述历史(8)中接受采访时,我最喜欢的一句话是:“但对我而言,最奇妙的事情之一就是发明一些东西,并且在几周之内成为世界上唯一的人知道这一点。” 在 最奇妙的事情之一就是发明某种东西,并且在几周之内成为世界上唯一知道这一点的人。” 在 最奇妙的事情之一就是发明某种东西,并且在几周之内成为世界上唯一知道这一点的人。” 在ACS传感器,我们发表了许多基于SAW器件的精彩论文。仅举几例,在7月号中,Fu和合作者报告了一种基于将电磁超材料和薄膜SAW技术集成在柔性编织碳纤维上的传感概念,并展示了其对无线,无创和连续监测生物分子的功能(doi.org/10.1021/acssensors.0c00948)。在5月号中,Duan和同事基于对SAW谐振器的IDT电极具有明显的质量加载效应,发布了一种新的感应机制(doi.org/10.1021/acssensors.0c00259)。通过仿真和实验相结合,他们证明了其质量灵敏度是传统SAW器件的约1000倍,并且TNT检测具有很高的灵敏度。在最近的另一篇论文中,土壤中2 S(doi.org/10.1021/acssensors.0c00013)。最后,在最近发表的另一篇论文中,Zhou及其合作者提出了一种使用单端口洛夫模式表面声波传感器(doi.org/10.1021/acssensors.9b02382)评估血液止血的策略。在所有这些论文中,Dick White于1965年发明了IDT结构,这是他的传统的一个普遍再现。本社论中表达的观点只是作者的观点,不一定是ACS的观点。本文引用了其他8个出版物。
更新日期:2020-10-25
down
wechat
bug