当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mutation of G‐protein γ subunit DEP1 increases planting density and resistance to sheath blight disease in rice
Plant Biotechnology Journal ( IF 13.8 ) Pub Date : 2020-10-24 , DOI: 10.1111/pbi.13500
Jing Miao Liu 1 , Qiong Mei 2 , Cai Yun Xue 2 , Zi Yuan Wang 2 , Dao Pin Li 1 , Yong Xin Zhang 1 , Yuan Hu Xuan 2
Affiliation  

One of the important goals of crop breeding is yield improvement. Among the yield indices, the tiller angle is tightly associated with enhancing photosynthetic efficiency and facilitating enhanced planting density (Sakamoto et al., 2006; Wang and Li, 2008). Rice plants with erect tillers, leaves and panicles allow a high‐density planting system for high yields but are more susceptible to the occurrence of sheath blight disease causing yield reduction. Therefore, the antagonistic relationship between crop yield and immunity pathways makes crop breeding extremely difficult (Ning et al., 2017). In our previous studies, we found that overexpression of loose plant architecture 1 (LPA1) reduced the tiller and lamina joint angle but increased resistance to sheath blight disease through activation of PIN1a‐mediated auxin distribution, suggesting the breeding potential of LPA1 in high‐density planting systems (Liu et al., 2016; Sun et al., 2019). To further analyse the mechanism of tiller angle and sheath blight regulation, we performed a yeast two‐hybrid selection and identified G‐protein γ subunit DEP1 (dense and erect panicle 1, Os09g26999) as a novel interactor of LPA1. The heterotrimeric G proteins, comprising α, β and γ subunits, are key players in the transmission of extracellular signals via membrane‐spanning G‐protein‐coupled receptors to intracellular effectors (Gilman, 1987), and panicle erectness is controlled by a dominant allele of DEP1, which reduces the length of the inflorescence internode (Huang et al., 2009). Further analysis indicated that DEP1 interacted with both full‐length LPA1 and its N‐terminal region (indeterminate domain, IDD) (Figure 1a). Furthermore, coimmunoprecipitation (co‐IP) and split‐GFP assays confirmed that LPA1 interacted with DEP1 in the nucleus (Figure 1b,c).

image
Figure 1
Open in figure viewerPowerPoint
DEP1 controls the tiller angle and resistance to sheath blight disease in rice. (a) The interaction between LAP1 and DEP1 was analysed in a yeast two‐hybrid system. Interaction between activating domain (AD)‐DEP1 and binding domain (BD)‐LPA1 (full length), BD‐LPA1‐N (N‐terminal), or BD‐LAP1‐C (C‐terminal) was analysed. (b) Coimmunoprecipitation (co‐IP) was performed to analyse the interaction between DEP1 and LPA1 in tobacco leaves. DEP1‐Myc + LPA1‐GFP or DEP1‐Myc + GFP were transfected into tobacco leaves. Proteins immunoprecipitated using anti‐GFP were detected using anti‐Myc antibody. The levels of DEP1‐Myc, GFP and LPA1‐GFP from whole‐cell lysates (WCL) were detected using anti‐Myc and anti‐GFP antibodies, respectively. (c) Reconstitution of GFP fluorescence from LPA1‐nYFP + DEP1‐cCFP and LPA1‐nYFP + cCFP. Bars = 10 μm. (d) Expression patterns of DEP1 in the leaf, root, sheath and flower tissues were examined. Data indicate average ± standard error (SE) (n =3). (e) Expressions of LPA1 and DEP1 were tested after 0, 24, 48 and 72 h of R. solani AG1‐IA inoculation. Data indicate average ± standard error (SE) (n =3). (f) Free GFP and DEP1‐GFP signals were detected in the protoplasts. GFP signal was checked at 18 and 48 h. Bars = 10 μm. (g) DEP1 expression level in wild type (WT), DEP1 RNAi lines (#1 and #3) and dep1‐ko was analysed by northern blot analysis. EtBr staining was used as a loading control. The numbers shown at the bottom of the blot indicate the relative density of each band. ND: not detected. (h) Shown are 3‐month‐old WT, dep1‐ko and DEP1 RNAi lines (#1 and #3) plants. (i) The leaf and panicle of WT and dep1‐ko were photographed. (j) Tiller angles of plants from panel (h) are shown. Data indicate average ± SE (n> 10). (k) Shown are 3‐month‐old WT, dep1‐ko, lpa1, DEP1 (+/‐)/LPA1 (+/‐) and lpa1/dep1‐ko. (l) Tiller angles of the lines from panel (k) are calculated. Data indicate average ± SE (n > 10). (m) Leaves and sheath from the WT, dep1‐ko and DEP1 RNAi #1 had been inoculated with R. solani AG1‐IA. Each experiment was performed in triplicate. (n) The percentage of lesions in the leaves and sheath shown in (m) was examined. Data indicate average ± SE (n > 10). (o) Leaves from the WT, lpa1, dep1‐ko and lpa1/dep1‐ko plants were inoculated with R. solani AG1‐IA. (p) The percentage of lesions in the leaves from panel (o) was examined. Data indicate average ± SE (n > 10). (q) LPA1‐GFP protein levels in LPA1‐GFP and dep1‐ko/LPA1‐GFP transgenic plants were examined. The proteins stained with Coomassie brilliant blue (CBB) were used as the loading control. (r) The band density shown in panel (q) was calculated. Data indicate average ± SE (n =3). (s) An electrophoretic mobility shift assay (EMSA) was conducted to evaluate the affinities of LPA1 and DEP1 to the PIN1a promoter. (t) Transient expression of p35S:LPA1 alone or p35S:LPA1 and p35S:DEP1 together with a construct including the GUS gene under the control of 1.5 kb PIN1a promoter in protoplast cells. A luciferase gene driven by the 35S promoter was used as an internal control to normalize GUS expression. Error bars represent ± SE (n = 6). (u) Expression level of PIN1a in WT, lpa1, dep1‐ko and lpa1/dep1‐ko plants. Data indicate average ± SE (n =3). (w) Shown are 3‐month‐old WT, PIN1a RNAi, dep1‐ko and PIN1a RNAi/dep1‐ko plants. (v) Tiller angles of the lines from panel (u). Data indicate average ± SE (n > 10). (x) Leaves from the WT, PIN1a RNAi, dep1‐ko and PIN1a RNAi/dep1‐ko plants were inoculated with R. solani AG1‐IA and were photographed after infection. (y) The percentage of lesions in the leaves shown in panel (x) was examined. Data indicate average ± SE (n > 10). (z) Schematic diagram showing LAP1‐DEP1 regulating PIN1a transcription, and its mediated auxin distribution on sheath blight resistance and tiller angle. Different letters above the columns indicate a statistically significant difference between groups. The lesion areas in the leaves and sheath were calculated after 3 days following inoculation.

Through qPCR, we found that DEP1 expression in sheaths is high compared with that in leaves, roots and flowers (Figure 1d). Rhizoctonia solani inoculation induced LPA1, but not DEP1 (Figure 1e), and DEP1‐GFP was localized at the plasma membrane and nucleus (Figure 1f). To analyse DEP1 function in the japonica rice cultivar Dongjin, a DEP1 knockout mutant dep1‐ko (An et al., 2003) (PFG_3A‐02648) with the T‐DNA inserted into the first intron, and DEP1 RNAi lines were used. Northern blot results confirmed that DEP1 expression was suppressed by about 50% in two RNAi lines (#1 and #3) while it was not detected in dep1‐ko (Figure 1g). Compared with wild type, dep1‐ko and DEP1 RNAi plants exhibited a narrow tiller angle, similar shape of leaves and a short panicle (Figure 1h,i,j).

It has previously been shown that lpa1 causes a wider tiller angle (Liu et al., 2016; Wu et al., 2013). Further genetic studies showed that lpa1 plants were similar to lpa1/dep1‐ko plants exhibiting a wider tiller angle. However, the tiller angle of plants that were heterozygous for both genes (LPA1 (+/‐)/DEP1 (+/‐)) was similar to that of wild‐type plants (Figure 1k,l). In addition, overexpression of LPA1 has been shown to increase resistance to rice sheath blight (Sun et al., 2019). Interestingly, dep1‐ko and DEP1 RNAi plants were less susceptible to sheath blight compared with wild‐type plants (Figure 1m,n). Upon further examination, we discovered that lpa1 and lpa1/dep1‐ko plants exhibited similar symptoms and were more susceptible, while dep1‐ko plants were significantly less susceptible to sheath blight than wild‐type plants (Figure 1o,p).

Even though DEP1 interacts with LPA1, but Western blot analysis showed that LPA1‐GFP protein levels were similar in LPA1‐GFP and dep1‐ko/LPA1‐GFP, a genetic combination by crossing LPA1‐GFP and dep1‐ko plants (Figure 1q,r). LPA1 activates PIN1a via promoter binding, which increases planting density and resistance to sheath blight disease (Sun et al., 2019). Therefore, we further tested the role of DEP1 in LPA1‐mediated PIN1a activation via the EMSA and transient assays. EMSA result indicated that DEP1 inhibits the binding of LPA1 to the PIN1a promoter (Figure 1s). The transient assay by co‐transformed with p35S:LPA1, p35S:DEP1 or p35S:LPA1 together with p35S:DEP1 and a vector expressing the beta‐glucuronidase gene (GUS) under the control of pPIN1a promoter in protoplast cells revealed that co‐expression of DEP1 reduced the ability of LPA1 to stimulate the relative GUS activity (Figure 1t), and qPCR results also showed that PIN1a expression level was higher in dep1‐ko than in lpa1, lpa1/dep1‐ko and wild‐type plants (Figure 1u). Further genetic studies demonstrated that PIN1 RNAi plants were similar to PIN1 RNAi/dep1‐ko plants exhibiting a wider tiller angle (Figure 1v,w). In addition, PIN1a RNAi and PIN1 RNAi/dep1‐ko plants were more susceptible, while dep1‐ko was less susceptible to sheath blight compared with wild‐type plants (Figure 1x,y).

Taken together, our analyses revealed that DEP1 interacts with LPA1 to regulate PIN1a expression and that down‐regulation of DEP1 enhanced planting density by decreasing the tiller angle and at the same time promoted rice resistance to sheath blight disease (Figure 1z). In addition, DEP1 inhibited LPA1‐dependent activation of PIN1a transcription via interacts with the N‐terminal region of LPA1, which is the IDD domain region, a known DNA‐binding domain (Kozaki et al., 2004). Our data suggest that the interaction between DEP1 and the IDD domain inhibits the DNA‐binding ability of LPA1, thereby suppressing PIN1a expression, leading to an increase in planting density and resistance to sheath blight disease in rice.



中文翻译:

G蛋白γ亚基DEP1的突变增加了水稻的种植密度和对纹枯病的抗性

作物育种的重要目标之一是提高产量。在产量指标中,分蘖角度与提高光合效率和促进种植密度密切相关(Sakamoto et al ., 2006 ; Wang and Li, 2008)。具有直立分蘖、叶片和圆锥花序的水稻植株允许高密度种植系统以获得高产,但更容易发生纹枯病,从而导致产量下降。因此,作物产量与免疫途径之间的拮抗关系使得作物育种极为困难(Ning et al ., 2017)。在我们之前的研究中,我们发现松散植物结构 1 (LPA1) 的过表达通过激活 PIN1a 介导的生长素分布降低了分蘖和叶片关节角度,但增加了对纹枯病的抗性,这表明LPA1在高密度中的育种潜力种植系统(Liu et al ., 2016 ; Sun et al ., 2019)。为了进一步分析分蘖角和纹枯病调控的机制,我们进行了酵母双杂交选择,并鉴定出 G 蛋白 γ 亚基 DEP1(致密直立圆锥花序 1,Os09g26999)是 LPA1 的新型相互作用物。异源三聚体 G 蛋白,包括 α、β 和 γ 亚基,是通过跨膜 G 蛋白偶联受体将细胞外信号传递到细胞内效应器的关键参与者(Gilman,1987 年),并且圆锥花序的直立受显性等位基因控制DEP1减少了花序节间的长度 (Huang et al ., 2009)。进一步分析表明,DEP1 与全长 LPA1 及其 N 末端区域(不确定域,IDD)相互作用(图 1a)。此外,共免疫沉淀 (co-IP) 和分裂 GFP 测定证实 LPA1 与细胞核中的 DEP1 相互作用(图 1b,c)。

图片
图1
在图形查看器中打开微软幻灯片软件
DEP1控制水稻分蘖角和纹枯病抗性。(a) 在酵母双杂交系统中分析 LAP1 和 DEP1 之间的相互作用。分析了激活域 (AD)-DEP1 与结合域 (BD)-LPA1(全长)、BD-LPA1-N(N 端)或 BD-LAP1-C(C 端)之间的相互作用。(b) 进行免疫共沉淀 (co-IP) 以分析烟叶中 DEP1 和 LPA1 之间的相互作用。将 DEP1-Myc + LPA1-GFP 或 DEP1-Myc + GFP 转染到烟叶中。使用抗-Myc 抗体检测使用抗-GFP 免疫沉淀的蛋白质。分别使用抗 Myc 和抗 GFP 抗体检测全细胞裂解物 (WCL) 中 DEP1-Myc、GFP 和 LPA1-GFP 的水平。(c) 从 LPA1-nYFP + DEP1-cCFP 和 LPA1-nYFP + cCFP 重建 GFP 荧光。条形 = 10 μm。检测了叶、根、鞘和花组织中的DEP1。数据表示平均值±标准误差(SE)(n  = 3)。(e)在R. solani AG1-IA 接种0、24、48和 72 小时后检测LPA1DEP1的表达。数据表示平均值±标准误差(SE)(n  = 3)。(f) 在原生质体中检测到游离 GFP 和 DEP1-GFP 信号。在 18 和 48 小时检查 GFP 信号。条形 = 10 μm。(g)野生型 (WT)、DEP1 RNAi系(#1#3)和dep1-ko中的DEP1表达水平通过northern印迹分析进行分析。EtBr 染色用作上样对照。印迹底部显示的数字表示每个条带的相对密度。ND:未检测到。(h) 显示的是 3 个月大的 WT、dep1-koDEP1 RNAi系(#1#3)植物。(i) 拍摄了 WT 和dep1-ko的叶子和圆锥花序。(j) 显示了面板 (h) 中植物的分蘖角。数据表示平均值 ± SE (n> 10)。(k) 显示的是 3 个月大的 WT、dep1-kolpa1DEP1 (+/-)/LPA1 (+/-)lpa1/dep1-ko。(l) 计算面板 (k) 中线的分蘖角。数据表示平均值 ± SE ( n > 10)。(m) 来自 WT、dep1-koDEP1 RNAi #1的叶子和鞘已经接种了R. solani AG1-IA。每个实验一式三份进行。(n)检查了(m)中所示的叶和鞘中的病变百分比。数据表示平均值 ± SE ( n  > 10)。(o) WT、lpa1dep1-kolpa1 / dep1-ko植物的叶子用R. solani AG1-IA接种。( p )检查了面板( o )的叶子中的病变百分比。数据表示平均值 ± SE ( n  > 10)。(q) LPA1- GFPdep1-ko/LPA1-GFP中的 LPA1-GFP 蛋白水平检查了转基因植物。用考马斯亮蓝 (CBB) 染色的蛋白质用作上样对照。(r) 计算面板 (q) 中显示的带密度。数据表示平均值 ± SE ( n  =3)。(s) 进行电泳迁移率变动分析 (EMSA) 以评估 LPA1 和 DEP1 对PIN1a启动子的亲和力。(t) p35S 的瞬时表达:单独的 LPA1 或p35S:LPA1p35S : DEP1连同包含受1.5 kb PIN1a控制的GUS基因的构建体原生质体细胞中的启动子。由 35S 启动子驱动的荧光素酶基因用作内部对照以使 GUS 表达正常化。误差线代表 ± SE ( n  = 6)。(u) WT、lpa1dep1-kolpa1 / dep1-ko植物中PIN1a的表达水平。数据表示平均值 ± SE ( n  =3)。(w) 显示的是 3 个月大的 WT、PIN1a RNAidep1-koPIN1a RNAi / dep1-ko植物。(v) 面板 (u) 中线条的分蘖角。数据表示平均值 ± SE ( n  > 10)。(x) 来自 WT、PIN1a RNAidep1-ko的叶子PIN1a RNAi / dep1-ko植物接种R. solani AG1-IA 并在感染后拍照。(y)检查了面板(x)中所示叶片中的病变百分比。数据表示平均值 ± SE ( n  > 10)。(z) 示意图显示了 LAP1-DEP1 调节PIN1a转录,及其介导的生长素分布对纹枯病抗性和分蘖角的影响。列上方的不同字母表示组间存在统计学显着差异。接种3天后计算叶片和鞘中的病变面积。

通过 qPCR,我们发现鞘中的DEP1表达高于叶、根和花中的表达(图 1d)。立枯丝核菌接种诱导LPA1,但不诱导DEP1(图 1e),并且 DEP1-GFP 定位于质膜和细胞核(图 1f)。为了分析粳稻品种东津中的DEP1功能,使用了将 T-DNA 插入第一个内含子的DEP1敲除突变体dep1-ko (An et al ., 2003 ) (PFG_3A-02648) 和DEP1 RNAi 系。Northern印迹结果证实DEP1在两条RNAi系(#1#3 )中,表达被抑制了约 50%,而在dep1-ko中未检测到(图 1g)。与野生型相比,dep1-koDEP1 RNAi植物表现出较窄的分蘖角、相似的叶片形状和短圆锥花序(图 1h、i、j)。

先前已经表明lpa1导致更宽的分蘖角(Liu et al ., 2016 ; Wu et al ., 2013)。进一步的遗传研究表明,lpa1植物与lpa1/dep1-ko植物相似,表现出更宽的分蘖角。然而,两种基因杂合的植物(LPA1(+/-)/ DEP1(+/-))的分蘖角与野生型植物相似(图1k,l)。此外,已显示LPA1的过表达可增加对水稻纹枯病的抗性(Sun et al ., 2019)。有趣的是,dep1-ko与野生型植物相比, DEP1 RNAi植物对纹枯病的敏感性较低(图 1m,n)。经过进一步检查,我们发现lpa1lpa1/dep1-ko植物表现出相似的症状并且更易感,而dep1-ko植物对纹枯病的敏感性明显低于野生型植物(图 1o,p)。

尽管 DEP1 与 LPA1 相互作用,但蛋白质印迹分析显示 LPA1-GFP 蛋白水平在LPA1-GFPdep1-ko/LPA1-GFP中相似,这是一种通过LPA1-GFPdep1-ko植物杂交的遗传组合(图 1q, r)。LPA1 通过启动子结合激活PIN1a,从而增加种植密度和对纹枯病的抗性(Sun et al ., 2019)。因此,我们通过 EMSA 和瞬时检测进一步测试了 DEP1 在 LPA1 介导的PIN1a激活中的作用。EMSA 结果表明 DEP1 抑制 LPA1 与PIN1a的结合启动子(图 1s)。通过与p35S:LPA1p35S:DEP1p35S:LPA1以及p35S:DEP1和在原生质体细胞中表达受pPIN1a启动子控制的 β-葡萄糖醛酸酶基因 (GUS) 的载体共转化的瞬时测定显示,共表达DEP1 的表达降低了 LPA1 刺激相对 GUS 活性的能力(图 1t),qPCR 结果也显示PIN1a在dep1-ko中的表达水平高于lpa1 lpa1 /dep1-ko和野生型植物(图 1u )。进一步的遗传研究表明,PIN1 RNAi植物与PIN1 RNAi / dep1-ko植物表现出更宽的分蘖角(图 1v,w)。此外,与野生型植物相比, PIN1a RNAiPIN1 RNAi / dep1-ko植物对纹枯病的敏感性更高,而dep1-ko对纹枯病的敏感性较低(图 1x,y)。

总之,我们的分析表明,DEP1 与 LPA1 相互作用以调节PIN1a的表达,下调DEP1通过降低分蘖角度提高了种植密度,同时促进了水稻对纹枯病的抗性(图 1z)。此外,DEP1通过与 LPA1 的 N 端区域相互作用来抑制 LPA1 依赖的PIN1a转录激活,该区域是 IDD 结构域区域,一个已知的 DNA 结合结构域(Kozaki等人2004 年)。我们的数据表明,DEP1 和 IDD 结构域之间的相互作用抑制了 LPA1 的 DNA 结合能力,从而抑制了 PIN1a表达,导致水稻种植密度和对纹枯病的抗性增加。

更新日期:2020-10-24
down
wechat
bug