当前位置: X-MOL 学术Bioeng. Transl. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Validation of the 1,4‐butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications
Bioengineering & Translational Medicine ( IF 6.1 ) Pub Date : 2020-10-20 , DOI: 10.1002/btm2.10192
Carlos Chocarro-Wrona 1, 2, 3, 4 , Juan de Vicente 4, 5 , Cristina Antich 1, 2, 3, 4 , Gema Jiménez 1, 2, 4 , Daniel Martínez-Moreno 1, 2, 3, 4 , Esmeralda Carrillo 1, 2, 3, 4 , Elvira Montañez 6, 7 , Patricia Gálvez-Martín 8, 9 , Macarena Perán 1, 2, 4, 10 , Elena López-Ruiz 1, 2, 4, 10 , Juan Antonio Marchal 1, 2, 3, 4
Affiliation  

Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage‐like mechanical properties capable of sustaining high load‐bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4‐butanediol thermoplastic polyurethane elastomer (b‐TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b‐TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad‐derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT‐qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b‐TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b‐TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b‐TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.

中文翻译:


验证 1,4-丁二醇热塑性聚氨酯作为 3D 生物打印应用的新型材料



组织工程 (TE) 致力于制造模仿天然组织机械强度、结构和成分的植入物。软骨 TE 需要开发具有类似软骨机械特性的功能性个性化植入物,能够维持高承载环境,以融入软骨缺损的周围组织。在这项研究中,我们评估了新型 1,4-丁二醇热塑性聚氨酯弹性体 (b-TPUe) 衍生长丝作为 3D 生物打印材料在软骨 TE 中的应用。检查了 b-TPUe 在摩擦和弹性方面的机械行为,并与人类关节软骨、PCL 和 PLA 进行了比较。此外,将髌下脂肪垫衍生的人间充质干细胞(MSC)与支架一起进行生物打印。通过阿尔马尔蓝测定、SEM、共聚焦显微镜和 RT-qPCR 分析体外细胞毒性、增殖潜力、细胞活力和软骨分化。此外,还分析了体内生物相容性和宿主整合。 b-TPUe 表现出比 PCL 和 PLA 更接近天然软骨的压缩和剪切行为,以及更接近软骨的摩擦学特性。此外,b-TPUe 生物打印支架能够维持适当的增殖潜力、细胞活力,并支持 MSC 软骨形成。最后,体内研究显示支架植入、细胞外基质沉积和周围组织内整合后21天没有毒性作用。这是第一项验证 b-TPUe 用于 3D 生物打印的生物相容性的研究。 我们的研究结果表明,这种生物材料可用于人工组织的自动化生物制造,具有可定制的机械性能,包括软骨 TE 应用的巨大潜力。
更新日期:2020-10-20
down
wechat
bug