当前位置: X-MOL 学术Wildlife Monogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated Carnivore‐Ungulate Management: A Case Study in West‐Central Montana
Wildlife Monographs ( IF 4.3 ) Pub Date : 2020-10-21 , DOI: 10.1002/wmon.1056
Kelly M. Proffitt 1 , Robert Garrott 2 , Justin A. Gude 3 , Mark Hebblewhite 4 , Benjamin Jimenez 5 , J. Terrill Paterson 6 , Jay Rotella 6
Affiliation  

Understanding the effectiveness of harvest regulations to manipulate population abundances is a priority for wildlife managers, and reliable methods are needed to monitor populations. This is particularly true in controversial situations such as integrated carnivore‐ungulate management. We used an observational before‐after‐control‐treatment approach to evaluate a case study in west‐central Montana, USA, that applied conservative ungulate harvest together with liberalized carnivore harvest to achieve short‐term decreases in carnivore abundance and increases in ungulate recruitment. Our study areas included the Bitterroot treatment area and the Clark Fork control area, where mountain lion populations (Felis concolor) were managed for a 30% reduction and for stability, respectively. The goals of the mountain lion harvest were to provide a short‐term reduction of mountain lion predation on elk (Cervus canadensis) calves and an increase in elk recruitment, elk population growth rate, and ultimately elk abundance. We estimated mountain lion population abundance in the Bitterroot treatment and Clark Fork control areas before and 4 years after implementation of the 2012 harvest treatment. We developed a multi‐strata spatial capture‐recapture model that integrated recapture and telemetry data to evaluate mountain lion population responses to harvest changes. Mountain lion abundance declined with increasing harvest in the Bitterroot treatment area from 161 (90% credible interval [CrI] = 104, 233) to 115 (CrI = 69, 173). The proportion of males changed from 0.50 (CrI = 0.33, 0.67) to 0.28 (CrI = 0.17, 0.40), which translated into a decline in the abundance of males, and similar abundances of females (before: males = 80 [CrI = 52, 116], females = 81 [CrI = 52, 117]; after: males = 33 [CrI = 20, 49], females = 82 [CrI = 49, 124]). In the Clark Fork control area, an area twice as large as the Bitterroot treatment area, we found no evidence of changes in overall abundance or proportion of males in the population. The proportion of males changed from 0.42 (CrI = 0.26, 0.58) to 0.39 (CrI = 0.25, 0.54), which translated into similar abundances of males and females (before: males = 24 [CrI = 16, 36], females = 33 [CrI = 21, 39]; after: males = 28 [CrI = 18, 41], females = 44 [CrI = 29, 64]). To evaluate if elk recruitment and population growth rate increased following treatment, we developed an integrated elk population model. We compared recruitment and population growth rate during the 5 years prior to and 5 years following implementation of the mountain lion harvest treatment for 2 elk populations within the Bitterroot treatment area and 2 elk populations within the Clark Fork control area. We found strong evidence that temporal trends differed between the 2 areas. In the Bitterroot treatment area, per capita elk recruitment was stable around an estimated median value of 0.23 (CrI = 0.17, 0.36) in the pre‐treatment period (2007–2011), increased immediately after treatment (2013) to 0.42 (CrI = 0.29, 0.56), and then declined to 0.21 (CrI = 0.11, 0.32) in 2017. In contrast, per capita elk recruitment estimates in the Clark Fork control area had similar median values during the pre‐ (2007–2011: 0.30, CrI = 0.2, 0.35) and post‐treatment periods (2013–2017: 0.31, CrI = 0.26, 0.36). These changes in recruitment corresponded to similar changes in elk population growth rate, although population growth rates were also subject to variation due to changing elk harvest. In the Bitterroot treatment area, population growth rates in the pre‐treatment period were stable to slightly declining, with an estimated median value of 0.92 (CrI = 0.88, 1.07) in the pre‐treatment period (2007–2011). Population growth rate during the post‐treatment period increased immediately after treatment (2012: 1.17, CrI = 1.14, 1.20) prior to declining to 1.06 (CrI = 1.04, 1.09) in 2016. In contrast, the median population growth rates were roughly equal in the Clark Fork control area during the pre‐treatment period (1.01, CrI = 0.86, 1.09) from 2007 to 2011 and post‐treatment period (1.00, CrI = 0.83, 1.15) from 2013 to 2017. Together, these results indicate that the harvest treatment achieved a moderate (i.e., 29%) reduction in mountain lion population abundance within the treatment area that corresponded with short‐term increases in elk recruitment and population growth. Elk population demographic responses suggest that the harvest treatment effect was strongest immediately after the mountain lion harvest treatment was implemented and lessened over time as the harvest treatment was reduced. This suggests that the short‐term harvest treatment resulted in short‐term demographic responses in elk populations, and more sustained harvest treatments would be necessary to achieve longer‐term elk population demographic responses. We recommend that wildlife managers seeking to balance carnivore and ungulate population objectives design rigorous carnivore and ungulate population monitoring programs to assess the effects of harvest management programs. Assessing and understanding effects of carnivore harvest management programs will help to set realistic expectations regarding the effects of management programs on carnivore and ungulate populations and allow managers to better design programs to meet desired carnivore and ungulate population objectives.

中文翻译:

食肉动物一体化管理:以中西部蒙大拿州为例

对于野生动植物管理者来说,了解采伐法规控制种群数量的有效性是一个优先事项,并且需要可靠的方法来监测种群。在有争议的情况下(例如食肉动物-有蹄类动物的综合管理)尤其如此。我们在美国中西部的蒙大拿州采用了一种观察前,后治疗后的方法来评估一个案例研究,该案例将保守的有蹄类动物收获与自由化的食肉动物收获一起应用,以实现食肉动物丰度的短期下降和有蹄动物募集的增加。我们的研究区域包括Bitterroot治疗区和Clark Fork控制区,那里有美洲狮种群(Felis concolor)分别降低了30%和稳定性。美洲狮的收获目标是在短期内减少麋鹿(加拿大鹿)上的美洲狮捕食)犊牛和麋鹿的招募增加,麋鹿种群的增长率以及最终麋鹿的丰度。我们估计在实施2012年收成处理之前和之后的4年中,在Bitterroot处理和Clark Fork控制区域中的山狮种群数量。我们开发了一个多层次的空间捕获-捕获模型,该模型集成了捕获和遥测数据,以评估美洲狮种群对收获变化的响应。Bitterroot处理区的山狮丰度随着收获量的增加而下降,从161(90%可信区间[CrI] = 104,233)下降到115(CrI = 69,173)。男性比例从0.50(CrI = 0.33,0.67)变为0.28(CrI = 0.17,0.40),这意味着男性的丰度下降,而女性的丰度下降(之前:男性= 80 [CrI = 52 ,116],女性= 81 [CrI = 52,117]; 之后:男性= 33 [CrI = 20,49],女性= 82 [CrI = 49,124])。在克拉克福克(Clark Fork)控制区(面积是苦根茎处理区的两倍),我们没有发现总体丰度或男性人口比例发生变化的证据。男性比例从0.42(CrI = 0.26,0.58)变为0.39(CrI = 0.25,0.54),这意味着男性和女性的丰度相似(之前:男性= 24 [CrI = 16,36],女性= 33 [CrI = 21,39];之后:男性= 28 [CrI = 18,41],女性= 44 [CrI = 29,64])。为了评估治疗后麋鹿的招募和人口增长率是否增加,我们开发了一个综合的麋鹿种群模型。我们比较了在实施Bitterroot治疗地区的2只麋鹿种群和在Clark Clark管制地区的2只麋鹿种群实施山狮收获治疗之前和之后的5年内和5年内的招募和人口增长率。我们发现有力的证据表明两个地区之间的时间趋势有所不同。在Bitterroot治疗区,在治疗前阶段(2007-2011年),人均麋鹿募集稳定在估计中值0.23(CrI = 0.17,0.36)附近,在治疗后(2013年)立即增加到0.42(CrI = 0.29,0.56),并且然后在2017年下降到0.21(CrI = 0.11,0.32)。相比之下,人均在克拉克福克控制区的麋鹿招聘估计值在治疗前(2007-2011年:0.30,CrI = 0.2,0.35)和治疗后期间(2013-2017:0.31,CrI = 0.26,0.36)具有相似的中值。这些招聘变化对应于麋鹿种群增长率的类似变化,尽管种群增长率也因麋鹿收获量的变化而发生变化。在苦瓜根治疗区,治疗前期的人口增长率稳定至略有下降,在治疗前期(2007-2011年)的估计中值为0.92(CrI = 0.88,1.07)。治疗后的人口增长率在治疗后立即有所提高(2012年:1.17,CrI = 1.14,1.20),然后在2016年下降至1.06(CrI = 1.04,1.09)。相比之下,在2007年至2011年的治疗前期(1.01,CrI = 0.86,1.09)和2013年至2013年的治疗后期(1.00,CrI = 0.83,1.15),克拉克福克控制区的人口中位数增长率大致相等2017年。这些结果共同表明,收获处理使处理区内的山狮种群数量适度降低(即29%),这与麋鹿招募和种群增长的短期增加相对应。麋鹿种群的人口统计学响应表明,实施山狮采伐处理后,采伐处理效果最强,随着采伐处理的减少,采伐处理效果随时间逐渐减弱。这表明短期收获处理导致麋鹿种群的短期人口统计学响应,为了实现长期的麋鹿种群人口统计学响应,有必要采取更持续的收割方法。我们建议寻求平衡食肉动物和有蹄类种群目标的野生动植物管理者设计严格的食肉动物和有蹄类种群监测计划,以评估收获管理计划的效果。评估和了解食肉动物收获管理计划的效果将有助于就管理计划对食肉动物和有蹄类动物种群的影响设定现实的期望,并使管理人员能够更好地设计计划,以满足所需的食肉动物和有蹄类动物种群目标。我们建议寻求平衡食肉动物和有蹄类动物种群目标的野生动植物管理者设计严格的食肉动物和有蹄类动物种群监测计划,以评估收获管理计划的效果。评估和了解食肉动物收获管理计划的效果将有助于就管理计划对食肉动物和有蹄类动物种群的影响设定现实的期望,并使管理人员能够更好地设计计划,以满足所需的食肉动物和有蹄类动物种群目标。我们建议寻求平衡食肉动物和有蹄类动物种群目标的野生动植物管理者设计严格的食肉动物和有蹄类动物种群监测计划,以评估收获管理计划的效果。评估和了解食肉动物收获管理计划的效果将有助于就管理计划对食肉动物和有蹄类动物种群的影响设定现实的期望,并使管理人员能够更好地设计计划,以满足所需的食肉动物和有蹄类动物种群目标。
更新日期:2020-10-22
down
wechat
bug