当前位置: X-MOL 学术Minerals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SHRIMP U–Pb Zircon Ages, Geochemistry and Sr–Nd–Hf Isotope Systematics of the Zalute Intrusive Suite in the Southern Great Xing’an Range, NE China: Petrogenesis and Geodynamical Implications
Minerals ( IF 2.2 ) Pub Date : 2020-10-20 , DOI: 10.3390/min10100927
Huanan Liu , Feng Yuan , Shengjin Zhao , Mingjing Fan , Xiangguo Guo

An integrated zircon geochronological, elemental geochemical, and Sr–Nd–Hf isotopic investigation was carried out on a suite of dioritic–granitic rocks at Zalute in the southern Great Xing’an Range (SGXR), NE China, in order to probe the source and petrogenesis of these granitoid rocks and further constrain the geodynamical setting of early Early Cretaceous magmatism. The results of Sensitive High-Resolution Ion Micro Probe (SHRIMP) zircon U–Pb dating reveal that the Zalute dioritic–granitic rocks have a consistent crystallization age of ca. 137–136 Ma, consisting of quartz diorite (136 ± 1.4 Ma), monzogranite (136 ± 0.8 Ma), and granite porphyry (137 ± 1.3 Ma), which record an early Early Cretaceous magmatic intrusion. Geochemically, the quartz diorites, monzogranites, and granite porphyries are mostly high-K calc-alkaline and show features of typical I-type affinity. They possess uniform and depleted Sr–Nd–Hf isotopic compositions (e.g., initial 87Sr/86Sr ratios of 0.7035 to 0.7049, εNd(t) of −0.02 to +2.61, and εHf(t) of +6.8 to +9.6), reflecting a common source, whose parental magma is best explained as resulting from the partial melting of juvenile source rocks in the lower crust produced by underplating of mantle-derived mafic magma, with minor involvement of ancient crustal components. Evidence from their close spatio–temporal relationship, common source, and the compositional trend is consistent with a magmatic differentiation model of the intermediate-felsic intrusive suite, with continued fractional crystallization from quartz diorites, towards monzogranites, then to granite porphyries. Combined with previously published data in the SGXR, our new results indicate that the Zalute intermediate-felsic intrusive suite was formed during the post-collisional extension related to the closure of the Mongol–Okhotsk Ocean and subsequent slab break-off.
更新日期:2020-10-20
down
wechat
bug