当前位置: X-MOL 学术Electronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Backstepping Fuzzy Sliding Mode Control for the Antiskid Braking System of Unmanned Aerial Vehicles
Electronics ( IF 2.6 ) Pub Date : 2020-10-20 , DOI: 10.3390/electronics9101731
Xi Zhang , Hui Lin

This paper proposes a backstepping fuzzy sliding mode control method for the antiskid braking system (ABS) of unmanned aerial vehicles (UAVs). First, the longitudinal dynamic model of the UAV braking system is established and combined with the model of the electromechanical actuator (EMA), based on reasonable simplification. Subsequently, to overcome the higher-order nonlinearity of the braking system and ensure the lateral stability of the UAV during the braking process, an ABS controller is designed using the barrier Lyapunov function to ensure that the slip ratio can track the reference value without exceeding the preset range. Then, a power fast terminal sliding mode control algorithm is adopted to realize high-performance braking pressure control, which is required in the ABS controller, and a fuzzy corrector is established to improve the dynamic adaptation of the EMA controller in different braking pressure ranges. The experimental results show that the proposed braking pressure control strategy can improve the servo performance of the EMA, and the hardware in loop (HIL) experimental results indicate that the proposed slip ratio control strategy demonstrates a satisfactory performance in terms of stability under various runway conditions.

中文翻译:

无人机防滑制动系统的后推模糊滑模控制

提出了一种无人飞行器防滑制动系统的后推模糊滑模控制方法。首先,在合理简化的基础上,建立了无人机制动系统的纵向动力学模型,并将其与机电致动器(EMA)的模型相结合。随后,为了克服制动系统的高阶非线性并确保无人机在制动过程中的侧向稳定性,设计了使用屏障Lyapunov功能的ABS控制器,以确保滑移率可以跟踪参考值而不会超过预设范围。然后,采用功率快速终端滑模控制算法来实现ABS控制器所需的高性能制动压力控制,建立模糊校正器以改善EMA控制器在不同制动压力范围内的动态适应性。实验结果表明,所提出的制动压力控制策略可以改善EMA的伺服性能,而硬件在环(HIL)实验结果表明,所提出的滑移率控制策略在各种跑道条件下的稳定性方面都表现出令人满意的性能。 。
更新日期:2020-10-20
down
wechat
bug