当前位置: X-MOL 学术ISME J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon
The ISME Journal ( IF 10.8 ) Pub Date : 2020-10-20 , DOI: 10.1038/s41396-020-00804-x
Marie E Kroeger 1, 2 , Laura K Meredith 3, 4 , Kyle M Meyer 5, 6 , Kevin D Webster 7 , Plinio Barbosa de Camargo 8 , Leandro Fonseca de Souza 8 , Siu Mui Tsai 8 , Joost van Haren 4, 9 , Scott Saleska 10 , Brendan J M Bohannan 5 , Jorge L Mazza Rodrigues 11 , Erika Berenguer 12, 13 , Jos Barlow 12 , Klaus Nüsslein 1
Affiliation  

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.



中文翻译:

雨林到牧场的转化刺激了整个巴西亚马逊地区的土壤甲烷生成

亚马逊雨林是一个生物多样性热点地区,也是受到农业转化威胁的大型陆地碳汇。雨林到牧场的转化会刺激甲烷的释放,甲烷是一种强效温室气体。生物甲烷循环是由微生物驱动的;因此,本研究的重点是活跃的甲烷循环微生物及其在不同土地利用类型中的功能。我们从巴西亚马逊两个地理上不同的区域(圣塔伦、帕拉和阿里克梅斯、朗多尼亚)的三种土地利用类型(原生雨林、牧场和次生雨林)收集了完整的土壤核心,并进行了 DNA 稳定同位素探测和宏基因组学以确定活跃的甲烷氧化菌和产甲烷菌。在这两个地点,我们观察到不同土地利用类型的同位素标记的甲烷循环微生物群落的组成发生了显着变化,特别是牧场中活性产甲烷菌的丰度和多样性有所增加。我们得出结论,牧场土壤中产甲烷菌的丰度和活性显着增加可能会导致土壤甲烷排放量增加。此外,我们发现次生雨林的产甲烷活性与原始雨林相似,因此有可能随着甲烷汇而恢复,因此可以想象通过森林恢复来抵消热带地区的温室气体排放。这些发现对于为土地管理实践和全球热带雨林保护提供信息至关重要。我们得出结论,牧场土壤中产甲烷菌的丰度和活性显着增加可能会导致土壤甲烷排放量增加。此外,我们发现次生雨林的产甲烷活性与原始雨林相似,因此有可能随着甲烷汇而恢复,因此可以想象通过森林恢复来抵消热带地区的温室气体排放。这些发现对于为土地管理实践和全球热带雨林保护提供信息至关重要。我们得出结论,牧场土壤中产甲烷菌的丰度和活性显着增加可能会导致土壤甲烷排放量增加。此外,我们发现次生雨林的产甲烷活性与原始雨林相似,因此有可能随着甲烷汇而恢复,因此可以想象通过森林恢复来抵消热带地区的温室气体排放。这些发现对于为土地管理实践和全球热带雨林保护提供信息至关重要。使恢复森林抵消热带温室气体排放成为可能。这些发现对于为土地管理实践和全球热带雨林保护提供信息至关重要。使恢复森林抵消热带温室气体排放成为可能。这些发现对于为土地管理实践和全球热带雨林保护提供信息至关重要。

更新日期:2020-10-20
down
wechat
bug