当前位置: X-MOL 学术Mol. Cell. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms
Molecular and Cellular Neuroscience ( IF 3.5 ) Pub Date : 2020-10-20 , DOI: 10.1016/j.mcn.2020.103564
Shigeo Okabe 1
Affiliation  

Dendritic spines are major sites of excitatory synaptic connection in pyramidal neurons of the forebrain, and their functional regulation underlies the development of functional neuronal circuits and experience-dependent circuit plasticity. Dendritic spines contain a large amount of actin filaments, and their organization and dynamics control both the morphology and function of dendritic spines. New optical technologies, including super-resolution microscopy, fluorescence lifetime imaging, and fluorescence correlation measurements, have helped gather further information about the nanoscale features of spine structure and cytoskeletal organization, together with the molecular interactions and mobility within spines. These experiments identified signals that are responsible for actin reorganization in nascent spine formation, the dynamic regulation of actin assembly/disassembly in spine nanodomains, and the interaction between actin and other cytoskeletal and membranous components that modulate synaptic functions. We discuss the crucial roles of nanoscale actin dynamics in both nascent and mature spines, which may differ fundamentally in the organization of actin filaments. Combined with the progress in the mathematical simulation of spine actin dynamics, realistic modeling of spine nanostructure based on the dynamic organization of actin filaments will become possible. The models will promote our understanding of the complex interaction between the structure, function, and signaling of dendritic spines.



中文翻译:

树突棘肌动蛋白动力学的调节:纳米结构、分子迁移率和信号机制

树突棘是前脑锥体神经元兴奋性突触连接的主要部位,它们的功能调节是功能神经元回路和经验依赖性回路可塑性发展的基础。树突棘含有大量肌动蛋白丝,它们的组织和动力学控制着树突棘的形态和功能。新的光学技术,包括超分辨率显微镜、荧光寿命成像和荧光相关性测量,有助于收集关于脊柱结构和细胞骨架组织的纳米级特征的更多信息,以及脊柱内的分子相互作用和移动性。这些实验确定了在新生脊柱形成中负责肌动蛋白重组的信号,脊柱纳米域中肌动蛋白组装/分解的动态调节,以及肌动蛋白与其他调节突触功能的细胞骨架和膜成分之间的相互作用。我们讨论了纳米级肌动蛋白动力学在新生和成熟棘中的关键作用,它们在肌动蛋白丝的组织上可能有根本的不同。结合脊柱肌动蛋白动力学数学模拟的进展,基于肌动蛋白丝动态组织的脊柱纳米结构的真实建模将成为可能。这些模型将促进我们对树突棘结构、功能和信号传导之间复杂相互作用的理解。我们讨论了纳米级肌动蛋白动力学在新生和成熟棘中的关键作用,它们在肌动蛋白丝的组织上可能有根本的不同。结合脊柱肌动蛋白动力学数学模拟的进展,基于肌动蛋白丝动态组织的脊柱纳米结构的真实建模将成为可能。这些模型将促进我们对树突棘结构、功能和信号传导之间复杂相互作用的理解。我们讨论了纳米级肌动蛋白动力学在新生和成熟棘中的关键作用,它们在肌动蛋白丝的组织上可能有根本的不同。结合脊柱肌动蛋白动力学数学模拟的进展,基于肌动蛋白丝动态组织的脊柱纳米结构的真实建模将成为可能。这些模型将促进我们对树突棘结构、功能和信号传导之间复杂相互作用的理解。基于肌动蛋白丝动态组织的脊柱纳米结构的真实建模将成为可能。这些模型将促进我们对树突棘结构、功能和信号传导之间复杂相互作用的理解。基于肌动蛋白丝动态组织的脊柱纳米结构的真实建模将成为可能。这些模型将促进我们对树突棘结构、功能和信号传导之间复杂相互作用的理解。

更新日期:2020-11-06
down
wechat
bug